You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Laughing
340376f7a6
|
2 years ago | |
---|---|---|
.github | 2 years ago | |
docker | 2 years ago | |
docs | 2 years ago | |
tests | 2 years ago | |
ultralytics | 2 years ago | |
.gitignore | 2 years ago | |
.pre-commit-config.yaml | 2 years ago | |
CITATION.cff | 2 years ago | |
CONTRIBUTING.md | 2 years ago | |
LICENSE | 2 years ago | |
MANIFEST.in | 2 years ago | |
README.md | 2 years ago | |
mkdocs.yml | 2 years ago | |
requirements.txt | 2 years ago | |
setup.cfg | 2 years ago | |
setup.py | 2 years ago |
README.md
Install
pip install ultralytics
Development
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .
Usage
1. CLI
To simply use the latest Ultralytics YOLO models
yolo task=detect mode=train model=yolov8n.yaml args=...
classify predict yolov8n-cls.yaml args=...
segment val yolov8n-seg.yaml args=...
export yolov8n.pt format=onnx
2. Python SDK
To use pythonic interface of Ultralytics YOLO model
from ultralytics import YOLO
model = YOLO("yolov8n.yaml") # create a new model from scratch
model = YOLO(
"yolov8n.pt"
) # load a pretrained model (recommended for best training results)
results = model.train(data="coco128.yaml", epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source="bus.jpg")
success = model.export(format="onnx")
If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.