[Docs]: Link buttons, add autobackend, BaseModel and ops (#130)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent af6e3c536b
commit 8996c5c6cf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -34,11 +34,10 @@ To use pythonic interface of Ultralytics YOLO model
```python
from ultralytics import YOLO
model = YOLO.new("yolov8n.yaml") # create a new model from scratch
model = YOLO.load(
model = YOLO("yolov8n.yaml") # create a new model from scratch
model = YOLO(
"yolov8n.pt"
) # load a pretrained model (recommended for best training results)
results = model.train(data="coco128.yaml", epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source="bus.jpg")

@ -33,7 +33,7 @@ CLI requires no customization or code. You can simply run all tasks from the ter
```bash
yolo task=detect mode=train model=s.yaml device=\'0,1,2,3\'
```
[CLI Guide](#){ .md-button .md-button--primary}
[CLI Guide](cli.md){ .md-button .md-button--primary}
## Python API
Ultralytics YOLO comes with pythonic Model and Trainer interface.
@ -42,10 +42,9 @@ Ultralytics YOLO comes with pythonic Model and Trainer interface.
import ultralytics
from ultralytics import YOLO
model = YOLO()
model.new("s-seg.yaml") # automatically detects task type
model.load("s-seg.pt") # load checkpoint
model = YOLO("s-seg.yaml") # automatically detects task type
model = YOLO("s-seg.pt") # load checkpoint
model.train(data="coco128-segments", epochs=1, lr0=0.01, ...)
model.train(data="coco128-segments", epochs=1, lr0=0.01, device="0,1,2,3") # DDP mode
```
[API Guide](#){ .md-button .md-button--primary}
[API Guide](sdk.md){ .md-button .md-button--primary}

@ -0,0 +1,15 @@
# nn Module
Ultralytics nn module contains 3 main components:
1. **AutoBackend**: A module that can run inference on all popular model formats
2. **BaseModel**: `BaseModel` class defines the operations supported by tasks like Detection and Segmentation
3. **modules**: Optimized and reusable neural network blocks built on PyTorch.
## AutoBackend
:::ultralytics.nn.autobackend.AutoBackend
## BaseModel
:::ultralytics.nn.tasks.BaseModel
## Modules
TODO

@ -0,0 +1,162 @@
This module contains optimized deep learning related operations used in the Ultralytics YOLO framework
## Non-max suppression
:::ultralytics.ops.non_max_suppression
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## Scale boxes
:::ultralytics.ops.scale_boxes
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## Scale image
:::ultralytics.ops.scale_image
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## clip boxes
:::ultralytics.ops.clip_boxes
handler: python
options:
show_source: false
show_root_toc_entry: false
---
# Box Format Conversion
## xyxy2xywh
:::ultralytics.ops.xyxy2xywh
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## xywh2xyxy
:::ultralytics.ops.xywh2xyxy
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## xywhn2xyxy
:::ultralytics.ops.xywhn2xyxy
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## xyxy2xywhn
:::ultralytics.ops.xyxy2xywhn
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## xyn2xy
:::ultralytics.ops.xyn2xy
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## xywh2ltwh
:::ultralytics.ops.xywh2ltwh
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## xyxy2ltwh
:::ultralytics.ops.xyxy2ltwh
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## ltwh2xywh
:::ultralytics.ops.ltwh2xywh
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## ltwh2xyxy
:::ultralytics.ops.ltwh2xyxy
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## segment2box
:::ultralytics.ops.segment2box
handler: python
options:
show_source: false
show_root_toc_entry: false
---
# Mask Operations
## resample_segments
:::ultralytics.ops.resample_segments
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## crop_mask
:::ultralytics.ops.crop_mask
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## process_mask_upsample
:::ultralytics.ops.process_mask_upsample
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## process_mask
:::ultralytics.ops.process_mask
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## process_mask_native
:::ultralytics.ops.process_mask_native
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## scale_segments
:::ultralytics.ops.scale_segments
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## masks2segments
:::ultralytics.ops.masks2segments
handler: python
options:
show_source: false
show_root_toc_entry: false
---
## clip_segments
:::ultralytics.ops.clip_segments
handler: python
options:
show_source: false
show_root_toc_entry: false
---

@ -6,8 +6,7 @@ This is the simplest way of simply using yolo models in a python environment. It
```python
from ultralytics import YOLO
model = YOLO()
model.new("n.yaml") # pass any model type
model = YOLO("yolov8n.yaml")
model(img_tensor) # Or model.forward(). inference.
model.train(data="coco128.yaml", epochs=5)
```
@ -16,10 +15,9 @@ This is the simplest way of simply using yolo models in a python environment. It
```python
from ultralytics import YOLO
model = YOLO()
model.load("n.pt") # pass any model type
model = YOLO("yolov8n.pt") # pass any model type
model(...) # inference
model.train(data="coco128.yaml", epochs=5)
model.train(epochs=5)
```
=== "Resume Training"
@ -35,8 +33,7 @@ This is the simplest way of simply using yolo models in a python environment. It
```python
from ultralytics import YOLO
model = YOLO()
model.load("model.pt")
model = YOLO("model.pt")
model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam
model.predict(source="folder", view_img=True) # Display preds. Accepts all yolo predict arguments
@ -48,7 +45,7 @@ This is the simplest way of simply using yolo models in a python environment. It
```python
from ultralytics import YOLO
model = YOLO()
model = YOLO("model.pt")
model.fuse()
model.info(verbose=True) # Print model information
model.export(format=) # TODO:
@ -61,7 +58,7 @@ This is the simplest way of simply using yolo models in a python environment. It
To know more about using `YOLO` models, refer Model class refernce
[Model reference](#){ .md-button .md-button--primary}
[Model reference](reference/model.md){ .md-button .md-button--primary}
---
### Customizing Tasks with Trainers

@ -51,6 +51,7 @@ markdown_extensions:
- pymdownx.superfences
- tables
- attr_list
- def_list
# Syntax highlight
- pymdownx.highlight:
anchor_linenums: true
@ -84,14 +85,16 @@ nav:
- Detection: tasks/detection.md
- Segmentation: tasks/segmentation.md
- Classification: tasks/classification.md
- Customization Tutorials:
- Advanced Tutorials:
- Customize Trainer: customize/train.md
- Customize Validator: customize/val.md
- Customize Predictor: customize/predict.md
- Reference:
- YOLO Models: reference/model.md
- Python Model interface: reference/model.md
- Engine:
- Trainer: reference/base_trainer.md
- Validator: reference/base_val.md
- Predictor: reference/base_pred.md
- Exporter: reference/exporter.md
- nn Module: reference/nn.md
- operations: reference/ops.md

@ -1,5 +1,6 @@
__version__ = "8.0.0.dev0"
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils import ops
__all__ = ["__version__", "YOLO", "hub"] # allow simpler import

@ -17,22 +17,36 @@ from ultralytics.yolo.utils.ops import xywh2xyxy
class AutoBackend(nn.Module):
# YOLOv5 MultiBackend class for python inference on various backends
def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
# Usage:
# PyTorch: weights = *.pt
# TorchScript: *.torchscript
# ONNX Runtime: *.onnx
# ONNX OpenCV DNN: *.onnx --dnn
# OpenVINO: *.xml
# CoreML: *.mlmodel
# TensorRT: *.engine
# TensorFlow SavedModel: *_saved_model
# TensorFlow GraphDef: *.pb
# TensorFlow Lite: *.tflite
# TensorFlow Edge TPU: *_edgetpu.tflite
# PaddlePaddle: *_paddle_model
"""
Ultralytics YOLO MultiBackend class for python inference on various backends
Args:
weights: the path to the weights file. Defaults to yolov8n.pt
device: The device to run the model on.
dnn: If you want to use OpenCV's DNN module to run the inference, set this to True. Defaults to
False
data: a dictionary containing the following keys:
fp16: If true, will use half precision. Defaults to False
fuse: whether to fuse the model or not. Defaults to True
Supported format and their usage:
| Platform | weights |
|-----------------------|------------------|
| PyTorch | *.pt |
| TorchScript | *.torchscript |
| ONNX Runtime | *.onnx |
| ONNX OpenCV DNN | *.onnx --dnn |
| OpenVINO | *.xml |
| CoreML | *.mlmodel |
| TensorRT | *.engine |
| TensorFlow SavedModel | *_saved_model |
| TensorFlow GraphDef | *.pb |
| TensorFlow Lite | *.tflite |
| TensorFlow Edge TPU | *_edgetpu.tflite |
| PaddlePaddle | *_paddle_model |
"""
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
nn_module = isinstance(weights, torch.nn.Module)
@ -215,6 +229,15 @@ class AutoBackend(nn.Module):
self.__dict__.update(locals()) # assign all variables to self
def forward(self, im, augment=False, visualize=False):
"""
Runs inference on the given model
Args:
im: the image tensor
augment: whether to augment the image. Defaults to False
visualize: if True, then the network will output the feature maps of the last convolutional layer.
Defaults to False
"""
# YOLOv5 MultiBackend inference
b, ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:
@ -297,10 +320,21 @@ class AutoBackend(nn.Module):
return self.from_numpy(y)
def from_numpy(self, x):
"""
`from_numpy` converts a numpy array to a tensor
Args:
x: the numpy array to convert
"""
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
def warmup(self, imgsz=(1, 3, 640, 640)):
# Warmup model by running inference once
"""
Warmup model by running inference once
Args:
imgsz: the size of the image you want to run inference on.
"""
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
@ -309,6 +343,12 @@ class AutoBackend(nn.Module):
@staticmethod
def _model_type(p='path/to/model.pt'):
"""
This function takes a path to a model file and returns the model type
Args:
p: path to the model file. Defaults to path/to/model.pt
"""
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
from ultralytics.yolo.engine.exporter import export_formats
@ -323,6 +363,12 @@ class AutoBackend(nn.Module):
@staticmethod
def _load_metadata(f=Path('path/to/meta.yaml')):
"""
> Loads the metadata from a yaml file
Args:
f: The path to the metadata file.
"""
from ultralytics.yolo.utils.files import yaml_load
# Load metadata from meta.yaml if it exists

@ -17,11 +17,36 @@ from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_wei
class BaseModel(nn.Module):
# YOLOv5 base model
'''
The BaseModel class is a base class for all the models in the Ultralytics YOLO family.
'''
def forward(self, x, profile=False, visualize=False):
return self._forward_once(x, profile, visualize) # single-scale inference, train
"""
> `forward` is a wrapper for `_forward_once` that runs the model on a single scale
Args:
x: the input image
profile: whether to profile the model. Defaults to False
visualize: if True, will return the intermediate feature maps. Defaults to False
Returns:
The output of the network.
"""
return self._forward_once(x, profile, visualize)
def _forward_once(self, x, profile=False, visualize=False):
"""
> Forward pass of the network
Args:
x: input to the model
profile: if True, the time taken for each layer will be printed. Defaults to False
visualize: If True, it will save the feature maps of the model. Defaults to False
Returns:
The last layer of the model.
"""
y, dt = [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
@ -36,6 +61,15 @@ class BaseModel(nn.Module):
return x
def _profile_one_layer(self, m, x, dt):
"""
It takes a model, an input, and a list of times, and it profiles the model on the input, appending
the time to the list
Args:
m: the model
x: the input image
dt: list of time taken for each layer
"""
c = m == self.model[-1] # is final layer, copy input as inplace fix
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
t = time_sync()
@ -48,7 +82,13 @@ class BaseModel(nn.Module):
if c:
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
def fuse(self):
"""
> It takes a model and fuses the Conv2d() and BatchNorm2d() layers into a single layer
Returns:
The model is being returned.
"""
LOGGER.info('Fusing layers... ')
for m in self.model.modules():
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
@ -58,11 +98,27 @@ class BaseModel(nn.Module):
self.info()
return self
def info(self, verbose=False, imgsz=640): # print model information
def info(self, verbose=False, imgsz=640):
"""
Prints model information
Args:
verbose: if True, prints out the model information. Defaults to False
imgsz: the size of the image that the model will be trained on. Defaults to 640
"""
model_info(self, verbose, imgsz)
def _apply(self, fn):
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
"""
`_apply()` is a function that applies a function to all the tensors in the model that are not
parameters or registered buffers
Args:
fn: the function to apply to the model
Returns:
A model that is a Detect() object.
"""
self = super()._apply(fn)
m = self.model[-1] # Detect()
if isinstance(m, (Detect, Segment)):
@ -72,6 +128,12 @@ class BaseModel(nn.Module):
return self
def load(self, weights):
"""
> This function loads the weights of the model from a file
Args:
weights: The weights to load into the model.
"""
# Force all tasks to implement this function
raise NotImplementedError("This function needs to be implemented by derived classes!")

@ -47,6 +47,17 @@ def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
def segment2box(segment, width=640, height=640):
"""
> Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to
(xyxy)
Args:
segment: the segment label
width: the width of the image. Defaults to 640
height: The height of the image. Defaults to 640
Returns:
the minimum and maximum x and y values of the segment.
"""
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
x, y = segment.T # segment xy
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
@ -55,7 +66,18 @@ def segment2box(segment, width=640, height=640):
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
# Rescale boxes (xyxy) from img1_shape to img0_shape
"""
> Rescale boxes (xyxy) from img1_shape to img0_shape
Args:
img1_shape: The shape of the image that the bounding boxes are for.
boxes: the bounding boxes of the objects in the image
img0_shape: the shape of the original image
ratio_pad: a tuple of (ratio, pad)
Returns:
The boxes are being returned.
"""
#
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
@ -70,18 +92,6 @@ def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
return boxes
def clip_boxes(boxes, shape):
# Clip boxes (xyxy) to image shape (height, width)
if isinstance(boxes, torch.Tensor): # faster individually
boxes[..., 0].clamp_(0, shape[1]) # x1
boxes[..., 1].clamp_(0, shape[0]) # y1
boxes[..., 2].clamp_(0, shape[1]) # x2
boxes[..., 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
def make_divisible(x, divisor):
# Returns nearest x divisible by divisor
if isinstance(divisor, torch.Tensor):
@ -101,7 +111,7 @@ def non_max_suppression(
nm=0, # number of masks
):
"""
Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
> Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
Arguments:
prediction (torch.Tensor): A tensor of shape (batch_size, num_boxes, num_classes + 4 + num_masks)
@ -217,6 +227,25 @@ def non_max_suppression(
return output
def clip_boxes(boxes, shape):
"""
> It takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the
shape
Args:
boxes: the bounding boxes to clip
shape: the shape of the image
"""
if isinstance(boxes, torch.Tensor): # faster individually
boxes[..., 0].clamp_(0, shape[1]) # x1
boxes[..., 1].clamp_(0, shape[0]) # y1
boxes[..., 2].clamp_(0, shape[1]) # x2
boxes[..., 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
def clip_coords(boxes, shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
if isinstance(boxes, torch.Tensor): # faster individually
@ -231,9 +260,16 @@ def clip_coords(boxes, shape):
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
"""
img1_shape: model input shape, [h, w]
img0_shape: origin pic shape, [h, w, 3]
masks: [h, w, num]
> It takes a mask, and resizes it to the original image size
Args:
im1_shape: model input shape, [h, w]
masks: [h, w, num]
im0_shape: the original image shape
ratio_pad: the ratio of the padding to the original image.
Returns:
The masks are being returned.
"""
# Rescale coordinates (xyxy) from im1_shape to im0_shape
if ratio_pad is None: # calculate from im0_shape
@ -258,7 +294,16 @@ def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
def xyxy2xywh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
"""
> It takes a list of bounding boxes, and converts them from the format [x1, y1, x2, y2] to [x, y, w,
h] where xy1=top-left, xy2=bottom-right
Args:
x: the input tensor
Returns:
the center of the box, the width and the height of the box.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
@ -268,7 +313,15 @@ def xyxy2xywh(x):
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
"""
> It converts the bounding box from x,y,w,h to x1,y1,x2,y2 where xy1=top-left, xy2=bottom-right
Args:
x: the input tensor
Returns:
the top left and bottom right coordinates of the bounding box.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
@ -278,7 +331,19 @@ def xywh2xyxy(x):
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
"""
> It converts the normalized coordinates to the actual coordinates [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
Args:
x: the bounding box coordinates
w: width of the image. Defaults to 640
h: height of the image. Defaults to 640
padw: padding width. Defaults to 0
padh: height of the padding. Defaults to 0
Returns:
the xyxy coordinates of the bounding box.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
@ -288,7 +353,20 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
"""
> It takes in a list of bounding boxes, and returns a list of bounding boxes, but with the x and y
coordinates normalized to the width and height of the image
Args:
x: the bounding box coordinates
w: width of the image. Defaults to 640
h: height of the image. Defaults to 640
clip: If True, the boxes will be clipped to the image boundaries. Defaults to False
eps: the minimum value of the box's width and height.
Returns:
the xywhn format of the bounding boxes.
"""
if clip:
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
@ -300,7 +378,19 @@ def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
# Convert normalized segments into pixel segments, shape (n,2)
"""
> It converts normalized segments into pixel segments of shape (n,2)
Args:
x: the normalized coordinates of the bounding box
w: width of the image. Defaults to 640
h: height of the image. Defaults to 640
padw: padding width. Defaults to 0
padh: padding height. Defaults to 0
Returns:
the x and y coordinates of the top left corner of the bounding box.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = w * x[..., 0] + padw # top left x
y[..., 1] = h * x[..., 1] + padh # top left y
@ -308,7 +398,15 @@ def xyn2xy(x, w=640, h=640, padw=0, padh=0):
def xywh2ltwh(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, w, h] where xy1=top-left
"""
> It converts the bounding box from [x, y, w, h] to [x1, y1, w, h] where xy1=top-left
Args:
x: the x coordinate of the center of the bounding box
Returns:
the top left x and y coordinates of the bounding box.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
@ -316,7 +414,15 @@ def xywh2ltwh(x):
def xyxy2ltwh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x1, y1, w, h] where xy1=top-left, xy2=bottom-right
"""
> Convert nx4 boxes from [x1, y1, x2, y2] to [x1, y1, w, h] where xy1=top-left, xy2=bottom-right
Args:
x: the input tensor
Returns:
the xyxy2ltwh function.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
@ -324,7 +430,12 @@ def xyxy2ltwh(x):
def ltwh2xywh(x):
# Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center
"""
> Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center
Args:
x: the input tensor
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] + x[:, 2] / 2 # center x
y[:, 1] = x[:, 1] + x[:, 3] / 2 # center y
@ -332,7 +443,16 @@ def ltwh2xywh(x):
def ltwh2xyxy(x):
# Convert nx4 boxes from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
"""
> It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left,
xy2=bottom-right
Args:
x: the input image
Returns:
the xyxy coordinates of the bounding boxes.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 2] = x[:, 2] + x[:, 0] # width
y[:, 3] = x[:, 3] + x[:, 1] # height
@ -340,7 +460,16 @@ def ltwh2xyxy(x):
def segments2boxes(segments):
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
"""
> It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
Args:
segments: list of segments, each segment is a list of points, each point is a list of x, y
coordinates
Returns:
the xywh coordinates of the bounding boxes.
"""
boxes = []
for s in segments:
x, y = s.T # segment xy
@ -349,7 +478,17 @@ def segments2boxes(segments):
def resample_segments(segments, n=1000):
# Up-sample an (n,2) segment
"""
> It takes a list of segments (n,2) and returns a list of segments (n,2) where each segment has been
up-sampled to n points
Args:
segments: a list of (n,2) arrays, where n is the number of points in the segment.
n: number of points to resample the segment to. Defaults to 1000
Returns:
the resampled segments.
"""
for i, s in enumerate(segments):
s = np.concatenate((s, s[0:1, :]), axis=0)
x = np.linspace(0, len(s) - 1, n)
@ -360,13 +499,15 @@ def resample_segments(segments, n=1000):
def crop_mask(masks, boxes):
"""
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
Vectorized by Chong (thanks Chong).
> It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box
Args:
- masks should be a size [h, w, n] tensor of masks
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
"""
masks: [h, w, n] tensor of masks
boxes: [n, 4] tensor of bbox coords in relative point form
Returns:
The masks are being cropped to the bounding box.
"""
n, h, w = masks.shape
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
@ -377,14 +518,18 @@ def crop_mask(masks, boxes):
def process_mask_upsample(protos, masks_in, bboxes, shape):
"""
Crop after upsample.
proto_out: [mask_dim, mask_h, mask_w]
out_masks: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape:input_image_size, (h, w)
return: h, w, n
"""
> It takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
quality but is slower.
Args:
protos: [mask_dim, mask_h, mask_w]
masks_in: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape: the size of the input image
Returns:
mask
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
@ -394,12 +539,17 @@ def process_mask_upsample(protos, masks_in, bboxes, shape):
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
"""
Crop before upsample.
proto_out: [mask_dim, mask_h, mask_w]
out_masks: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape:input_image_size, (h, w)
return: h, w, n
> It takes the output of the mask head, and applies the mask to the bounding boxes. This is faster but produces
downsampled quality of mask
Args:
protos: [mask_dim, mask_h, mask_w]
masks_in: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape: the size of the input image
Returns:
mask
"""
c, mh, mw = protos.shape # CHW
@ -420,12 +570,16 @@ def process_mask(protos, masks_in, bboxes, shape, upsample=False):
def process_mask_native(protos, masks_in, bboxes, shape):
"""
Crop after upsample.
protos: [mask_dim, mask_h, mask_w]
masks_in: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape: input_image_size, (h, w)
return: h, w, n
> It takes the output of the mask head, and crops it after upsampling to the bounding boxes.
Args:
protos: [mask_dim, mask_h, mask_w]
masks_in: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape: input_image_size, (h, w)
Returns:
masks: [h, w, n]
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
@ -441,7 +595,19 @@ def process_mask_native(protos, masks_in, bboxes, shape):
def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
# Rescale coords (xyxy) from img1_shape to img0_shape
"""
> Rescale segment coords (xyxy) from img1_shape to img0_shape
Args:
img1_shape: The shape of the image that the segments are from.
segments: the segments to be scaled
img0_shape: the shape of the image that the segmentation is being applied to
ratio_pad: the ratio of the image size to the padded image size.
normalize: If True, the coordinates will be normalized to the range [0, 1]. Defaults to False
Returns:
the segmented image.
"""
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
@ -460,7 +626,16 @@ def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=F
def masks2segments(masks, strategy='largest'):
# Convert masks(n,160,160) into segments(n,xy)
"""
> It takes a list of masks(n,h,w) and returns a list of segments(n,xy)
Args:
masks: the output of the model, which is a tensor of shape (batch_size, 160, 160)
strategy: 'concat' or 'largest'. Defaults to largest
Returns:
segments (List): list of segment masks
"""
segments = []
for x in masks.int().cpu().numpy().astype('uint8'):
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
@ -476,7 +651,14 @@ def masks2segments(masks, strategy='largest'):
def clip_segments(segments, shape):
# Clip segments (xy1,xy2,...) to image shape (height, width)
"""
> It takes a list of line segments (x1,y1,x2,y2) and clips them to the image shape (height, width)
Args:
segments: a list of segments, each segment is a list of points, each point is a list of x,y
coordinates
shape: the shape of the image
"""
if isinstance(segments, torch.Tensor): # faster individually
segments[:, 0].clamp_(0, shape[1]) # x
segments[:, 1].clamp_(0, shape[0]) # y

Loading…
Cancel
Save