|
|
|
@ -15,6 +15,7 @@ import torch
|
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
from omegaconf import OmegaConf # noqa
|
|
|
|
|
from omegaconf import open_dict
|
|
|
|
|
from torch.cuda import amp
|
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
|
|
from torch.optim import lr_scheduler
|
|
|
|
@ -90,10 +91,15 @@ class BaseTrainer:
|
|
|
|
|
# Dirs
|
|
|
|
|
project = self.args.project or f"runs/{self.args.task}"
|
|
|
|
|
name = self.args.name or f"{self.args.mode}"
|
|
|
|
|
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)
|
|
|
|
|
self.save_dir = Path(
|
|
|
|
|
self.args.get(
|
|
|
|
|
"save_dir",
|
|
|
|
|
increment_path(Path(project) / name, exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)))
|
|
|
|
|
self.wdir = self.save_dir / 'weights' # weights dir
|
|
|
|
|
if RANK in {-1, 0}:
|
|
|
|
|
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
|
|
|
|
|
with open_dict(self.args):
|
|
|
|
|
self.args.save_dir = str(self.save_dir)
|
|
|
|
|
yaml_save(self.save_dir / 'args.yaml', OmegaConf.to_container(self.args, resolve=True)) # save run args
|
|
|
|
|
self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths
|
|
|
|
|
|
|
|
|
@ -131,6 +137,7 @@ class BaseTrainer:
|
|
|
|
|
self.tloss = None
|
|
|
|
|
self.loss_names = None
|
|
|
|
|
self.csv = self.save_dir / 'results.csv'
|
|
|
|
|
self.plot_idx = [0, 1, 2]
|
|
|
|
|
|
|
|
|
|
# Callbacks
|
|
|
|
|
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
|
|
|
@ -199,7 +206,6 @@ class BaseTrainer:
|
|
|
|
|
else:
|
|
|
|
|
self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear
|
|
|
|
|
self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)
|
|
|
|
|
self.resume_training(ckpt)
|
|
|
|
|
self.scheduler.last_epoch = self.start_epoch - 1 # do not move
|
|
|
|
|
|
|
|
|
|
# dataloaders
|
|
|
|
@ -211,6 +217,7 @@ class BaseTrainer:
|
|
|
|
|
metric_keys = self.validator.metric_keys + self.label_loss_items(prefix="val")
|
|
|
|
|
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()?
|
|
|
|
|
self.ema = ModelEMA(self.model)
|
|
|
|
|
self.resume_training(ckpt)
|
|
|
|
|
self.run_callbacks("on_pretrain_routine_end")
|
|
|
|
|
|
|
|
|
|
def _do_train(self, rank=-1, world_size=1):
|
|
|
|
@ -230,6 +237,9 @@ class BaseTrainer:
|
|
|
|
|
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
|
|
|
|
|
f"Logging results to {colorstr('bold', self.save_dir)}\n"
|
|
|
|
|
f"Starting training for {self.epochs} epochs...")
|
|
|
|
|
if self.args.close_mosaic:
|
|
|
|
|
base_idx = (self.epochs - self.args.close_mosaic) * nb
|
|
|
|
|
self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])
|
|
|
|
|
for epoch in range(self.start_epoch, self.epochs):
|
|
|
|
|
self.epoch = epoch
|
|
|
|
|
self.run_callbacks("on_train_epoch_start")
|
|
|
|
@ -237,19 +247,21 @@ class BaseTrainer:
|
|
|
|
|
if rank != -1:
|
|
|
|
|
self.train_loader.sampler.set_epoch(epoch)
|
|
|
|
|
pbar = enumerate(self.train_loader)
|
|
|
|
|
# Update dataloader attributes (optional)
|
|
|
|
|
if epoch == (self.epochs - self.args.close_mosaic):
|
|
|
|
|
self.console.info("Closing dataloader mosaic")
|
|
|
|
|
if hasattr(self.train_loader.dataset, 'mosaic'):
|
|
|
|
|
self.train_loader.dataset.mosaic = False
|
|
|
|
|
if hasattr(self.train_loader.dataset, 'close_mosaic'):
|
|
|
|
|
self.train_loader.dataset.close_mosaic(hyp=self.args)
|
|
|
|
|
|
|
|
|
|
if rank in {-1, 0}:
|
|
|
|
|
self.console.info(self.progress_string())
|
|
|
|
|
pbar = tqdm(enumerate(self.train_loader), total=len(self.train_loader), bar_format=TQDM_BAR_FORMAT)
|
|
|
|
|
pbar = tqdm(enumerate(self.train_loader), total=nb, bar_format=TQDM_BAR_FORMAT)
|
|
|
|
|
self.tloss = None
|
|
|
|
|
self.optimizer.zero_grad()
|
|
|
|
|
for i, batch in pbar:
|
|
|
|
|
self.run_callbacks("on_train_batch_start")
|
|
|
|
|
|
|
|
|
|
# Update dataloader attributes (optional)
|
|
|
|
|
if epoch == (self.epochs - self.args.close_mosaic) and hasattr(self.train_loader.dataset, 'mosaic'):
|
|
|
|
|
LOGGER.info("Closing dataloader mosaic")
|
|
|
|
|
self.train_loader.dataset.mosaic = False
|
|
|
|
|
|
|
|
|
|
# Warmup
|
|
|
|
|
ni = i + nb * epoch
|
|
|
|
|
if ni <= nw:
|
|
|
|
@ -289,7 +301,7 @@ class BaseTrainer:
|
|
|
|
|
('%11s' * 2 + '%11.4g' * (2 + loss_len)) %
|
|
|
|
|
(f'{epoch + 1}/{self.epochs}', mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1]))
|
|
|
|
|
self.run_callbacks('on_batch_end')
|
|
|
|
|
if self.args.plots and ni < 3:
|
|
|
|
|
if self.args.plots and ni in self.plot_idx:
|
|
|
|
|
self.plot_training_samples(batch, ni)
|
|
|
|
|
|
|
|
|
|
self.run_callbacks("on_train_batch_end")
|
|
|
|
@ -367,7 +379,8 @@ class BaseTrainer:
|
|
|
|
|
if not pretrained:
|
|
|
|
|
model = check_file(model)
|
|
|
|
|
ckpt = self.load_ckpt(model) if pretrained else None
|
|
|
|
|
self.model = self.load_model(model_cfg=None if pretrained else model, weights=ckpt["model"]) # model
|
|
|
|
|
weights = ckpt["model"] if isinstance(ckpt, dict) else ckpt # torchvision weights are not dicts
|
|
|
|
|
self.model = self.load_model(model_cfg=None if pretrained else model, weights=weights)
|
|
|
|
|
return ckpt
|
|
|
|
|
|
|
|
|
|
def load_ckpt(self, ckpt):
|
|
|
|
@ -479,8 +492,9 @@ class BaseTrainer:
|
|
|
|
|
args_yaml = last.parent.parent / 'args.yaml' # train options yaml
|
|
|
|
|
if args_yaml.is_file():
|
|
|
|
|
args = get_config(args_yaml) # replace
|
|
|
|
|
args.model, args.resume, args.exist_ok = str(last), True, True # reinstate
|
|
|
|
|
args.model, resume = str(last), True # reinstate
|
|
|
|
|
self.args = args
|
|
|
|
|
self.resume = resume
|
|
|
|
|
|
|
|
|
|
def resume_training(self, ckpt):
|
|
|
|
|
if ckpt is None:
|
|
|
|
@ -493,7 +507,7 @@ class BaseTrainer:
|
|
|
|
|
if self.ema and ckpt.get('ema'):
|
|
|
|
|
self.ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA
|
|
|
|
|
self.ema.updates = ckpt['updates']
|
|
|
|
|
if self.args.resume:
|
|
|
|
|
if self.resume:
|
|
|
|
|
assert start_epoch > 0, \
|
|
|
|
|
f'{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n' \
|
|
|
|
|
f"Start a new training without --resume, i.e. 'yolo task=... mode=train model={self.args.model}'"
|
|
|
|
|