|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import contextlib
|
|
|
|
import math
|
|
|
|
import re
|
|
|
|
import time
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torchvision
|
|
|
|
|
|
|
|
from ultralytics.utils import LOGGER
|
|
|
|
|
|
|
|
from .metrics import box_iou
|
|
|
|
|
|
|
|
|
|
|
|
class Profile(contextlib.ContextDecorator):
|
|
|
|
"""
|
|
|
|
YOLOv8 Profile class.
|
|
|
|
Usage: as a decorator with @Profile() or as a context manager with 'with Profile():'
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, t=0.0):
|
|
|
|
"""
|
|
|
|
Initialize the Profile class.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
t (float): Initial time. Defaults to 0.0.
|
|
|
|
"""
|
|
|
|
self.t = t
|
|
|
|
self.cuda = torch.cuda.is_available()
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
"""
|
|
|
|
Start timing.
|
|
|
|
"""
|
|
|
|
self.start = self.time()
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __exit__(self, type, value, traceback): # noqa
|
|
|
|
"""
|
|
|
|
Stop timing.
|
|
|
|
"""
|
|
|
|
self.dt = self.time() - self.start # delta-time
|
|
|
|
self.t += self.dt # accumulate dt
|
|
|
|
|
|
|
|
def time(self):
|
|
|
|
"""
|
|
|
|
Get current time.
|
|
|
|
"""
|
|
|
|
if self.cuda:
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
return time.time()
|
|
|
|
|
|
|
|
|
|
|
|
def segment2box(segment, width=640, height=640):
|
|
|
|
"""
|
|
|
|
Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
segment (torch.Tensor): the segment label
|
|
|
|
width (int): the width of the image. Defaults to 640
|
|
|
|
height (int): The height of the image. Defaults to 640
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(np.ndarray): the minimum and maximum x and y values of the segment.
|
|
|
|
"""
|
|
|
|
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
|
|
|
x, y = segment.T # segment xy
|
|
|
|
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
|
|
|
x, y, = x[inside], y[inside]
|
|
|
|
return np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype) if any(x) else np.zeros(
|
|
|
|
4, dtype=segment.dtype) # xyxy
|
|
|
|
|
|
|
|
|
|
|
|
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True):
|
|
|
|
"""
|
|
|
|
Rescales bounding boxes (in the format of xyxy) from the shape of the image they were originally specified in
|
|
|
|
(img1_shape) to the shape of a different image (img0_shape).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
|
|
|
|
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
|
|
|
|
img0_shape (tuple): the shape of the target image, in the format of (height, width).
|
|
|
|
ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be
|
|
|
|
calculated based on the size difference between the two images.
|
|
|
|
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
|
|
|
|
rescaling.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
|
|
|
|
"""
|
|
|
|
if ratio_pad is None: # calculate from img0_shape
|
|
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
|
|
|
pad = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1), round(
|
|
|
|
(img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1) # wh padding
|
|
|
|
else:
|
|
|
|
gain = ratio_pad[0][0]
|
|
|
|
pad = ratio_pad[1]
|
|
|
|
|
|
|
|
if padding:
|
|
|
|
boxes[..., [0, 2]] -= pad[0] # x padding
|
|
|
|
boxes[..., [1, 3]] -= pad[1] # y padding
|
|
|
|
boxes[..., :4] /= gain
|
|
|
|
clip_boxes(boxes, img0_shape)
|
|
|
|
return boxes
|
|
|
|
|
|
|
|
|
|
|
|
def make_divisible(x, divisor):
|
|
|
|
"""
|
|
|
|
Returns the nearest number that is divisible by the given divisor.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (int): The number to make divisible.
|
|
|
|
divisor (int | torch.Tensor): The divisor.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(int): The nearest number divisible by the divisor.
|
|
|
|
"""
|
|
|
|
if isinstance(divisor, torch.Tensor):
|
|
|
|
divisor = int(divisor.max()) # to int
|
|
|
|
return math.ceil(x / divisor) * divisor
|
|
|
|
|
|
|
|
|
|
|
|
def non_max_suppression(
|
|
|
|
prediction,
|
|
|
|
conf_thres=0.25,
|
|
|
|
iou_thres=0.45,
|
|
|
|
classes=None,
|
|
|
|
agnostic=False,
|
|
|
|
multi_label=False,
|
|
|
|
labels=(),
|
|
|
|
max_det=300,
|
|
|
|
nc=0, # number of classes (optional)
|
|
|
|
max_time_img=0.05,
|
|
|
|
max_nms=30000,
|
|
|
|
max_wh=7680,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)
|
|
|
|
containing the predicted boxes, classes, and masks. The tensor should be in the format
|
|
|
|
output by a model, such as YOLO.
|
|
|
|
conf_thres (float): The confidence threshold below which boxes will be filtered out.
|
|
|
|
Valid values are between 0.0 and 1.0.
|
|
|
|
iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS.
|
|
|
|
Valid values are between 0.0 and 1.0.
|
|
|
|
classes (List[int]): A list of class indices to consider. If None, all classes will be considered.
|
|
|
|
agnostic (bool): If True, the model is agnostic to the number of classes, and all
|
|
|
|
classes will be considered as one.
|
|
|
|
multi_label (bool): If True, each box may have multiple labels.
|
|
|
|
labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner
|
|
|
|
list contains the apriori labels for a given image. The list should be in the format
|
|
|
|
output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
|
|
|
|
max_det (int): The maximum number of boxes to keep after NMS.
|
|
|
|
nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.
|
|
|
|
max_time_img (float): The maximum time (seconds) for processing one image.
|
|
|
|
max_nms (int): The maximum number of boxes into torchvision.ops.nms().
|
|
|
|
max_wh (int): The maximum box width and height in pixels
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(List[torch.Tensor]): A list of length batch_size, where each element is a tensor of
|
|
|
|
shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns
|
|
|
|
(x1, y1, x2, y2, confidence, class, mask1, mask2, ...).
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Checks
|
|
|
|
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
|
|
|
|
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
|
|
|
|
if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out)
|
|
|
|
prediction = prediction[0] # select only inference output
|
|
|
|
|
|
|
|
device = prediction.device
|
|
|
|
mps = 'mps' in device.type # Apple MPS
|
|
|
|
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
|
|
|
|
prediction = prediction.cpu()
|
|
|
|
bs = prediction.shape[0] # batch size
|
|
|
|
nc = nc or (prediction.shape[1] - 4) # number of classes
|
|
|
|
nm = prediction.shape[1] - nc - 4
|
|
|
|
mi = 4 + nc # mask start index
|
|
|
|
xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
|
|
|
|
|
|
|
|
# Settings
|
|
|
|
# min_wh = 2 # (pixels) minimum box width and height
|
|
|
|
time_limit = 0.5 + max_time_img * bs # seconds to quit after
|
|
|
|
redundant = True # require redundant detections
|
|
|
|
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
|
|
|
merge = False # use merge-NMS
|
|
|
|
|
|
|
|
prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
|
|
|
|
prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # xywh to xyxy
|
|
|
|
|
|
|
|
t = time.time()
|
|
|
|
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
|
|
|
|
for xi, x in enumerate(prediction): # image index, image inference
|
|
|
|
# Apply constraints
|
|
|
|
# x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
|
|
|
x = x[xc[xi]] # confidence
|
|
|
|
|
|
|
|
# Cat apriori labels if autolabelling
|
|
|
|
if labels and len(labels[xi]):
|
|
|
|
lb = labels[xi]
|
|
|
|
v = torch.zeros((len(lb), nc + nm + 4), device=x.device)
|
|
|
|
v[:, :4] = xywh2xyxy(lb[:, 1:5]) # box
|
|
|
|
v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls
|
|
|
|
x = torch.cat((x, v), 0)
|
|
|
|
|
|
|
|
# If none remain process next image
|
|
|
|
if not x.shape[0]:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Detections matrix nx6 (xyxy, conf, cls)
|
|
|
|
box, cls, mask = x.split((4, nc, nm), 1)
|
|
|
|
|
|
|
|
if multi_label:
|
|
|
|
i, j = torch.where(cls > conf_thres)
|
|
|
|
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
|
|
|
|
else: # best class only
|
|
|
|
conf, j = cls.max(1, keepdim=True)
|
|
|
|
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
|
|
|
|
|
|
|
|
# Filter by class
|
|
|
|
if classes is not None:
|
|
|
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
|
|
|
|
|
|
|
# Apply finite constraint
|
|
|
|
# if not torch.isfinite(x).all():
|
|
|
|
# x = x[torch.isfinite(x).all(1)]
|
|
|
|
|
|
|
|
# Check shape
|
|
|
|
n = x.shape[0] # number of boxes
|
|
|
|
if not n: # no boxes
|
|
|
|
continue
|
|
|
|
if n > max_nms: # excess boxes
|
|
|
|
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes
|
|
|
|
|
|
|
|
# Batched NMS
|
|
|
|
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
|
|
|
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
|
|
|
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
|
|
|
i = i[:max_det] # limit detections
|
|
|
|
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
|
|
|
# Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
|
|
|
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
|
|
|
weights = iou * scores[None] # box weights
|
|
|
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
|
|
|
if redundant:
|
|
|
|
i = i[iou.sum(1) > 1] # require redundancy
|
|
|
|
|
|
|
|
output[xi] = x[i]
|
|
|
|
if mps:
|
|
|
|
output[xi] = output[xi].to(device)
|
|
|
|
if (time.time() - t) > time_limit:
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
|
|
|
|
break # time limit exceeded
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
def clip_boxes(boxes, shape):
|
|
|
|
"""
|
|
|
|
It takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the
|
|
|
|
shape
|
|
|
|
|
|
|
|
Args:
|
|
|
|
boxes (torch.Tensor): the bounding boxes to clip
|
|
|
|
shape (tuple): the shape of the image
|
|
|
|
"""
|
|
|
|
if isinstance(boxes, torch.Tensor): # faster individually
|
|
|
|
boxes[..., 0].clamp_(0, shape[1]) # x1
|
|
|
|
boxes[..., 1].clamp_(0, shape[0]) # y1
|
|
|
|
boxes[..., 2].clamp_(0, shape[1]) # x2
|
|
|
|
boxes[..., 3].clamp_(0, shape[0]) # y2
|
|
|
|
else: # np.array (faster grouped)
|
|
|
|
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
|
|
|
|
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
|
|
|
|
|
|
|
|
|
|
|
|
def clip_coords(coords, shape):
|
|
|
|
"""
|
|
|
|
Clip line coordinates to the image boundaries.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
coords (torch.Tensor | numpy.ndarray): A list of line coordinates.
|
|
|
|
shape (tuple): A tuple of integers representing the size of the image in the format (height, width).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(None): The function modifies the input `coordinates` in place, by clipping each coordinate to the image boundaries.
|
|
|
|
"""
|
|
|
|
if isinstance(coords, torch.Tensor): # faster individually
|
|
|
|
coords[..., 0].clamp_(0, shape[1]) # x
|
|
|
|
coords[..., 1].clamp_(0, shape[0]) # y
|
|
|
|
else: # np.array (faster grouped)
|
|
|
|
coords[..., 0] = coords[..., 0].clip(0, shape[1]) # x
|
|
|
|
coords[..., 1] = coords[..., 1].clip(0, shape[0]) # y
|
|
|
|
|
|
|
|
|
|
|
|
def scale_image(masks, im0_shape, ratio_pad=None):
|
|
|
|
"""
|
|
|
|
Takes a mask, and resizes it to the original image size
|
|
|
|
|
|
|
|
Args:
|
|
|
|
masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
|
|
|
|
im0_shape (tuple): the original image shape
|
|
|
|
ratio_pad (tuple): the ratio of the padding to the original image.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
masks (torch.Tensor): The masks that are being returned.
|
|
|
|
"""
|
|
|
|
# Rescale coordinates (xyxy) from im1_shape to im0_shape
|
|
|
|
im1_shape = masks.shape
|
|
|
|
if im1_shape[:2] == im0_shape[:2]:
|
|
|
|
return masks
|
|
|
|
if ratio_pad is None: # calculate from im0_shape
|
|
|
|
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
|
|
|
|
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
|
|
|
|
else:
|
|
|
|
gain = ratio_pad[0][0]
|
|
|
|
pad = ratio_pad[1]
|
|
|
|
top, left = int(pad[1]), int(pad[0]) # y, x
|
|
|
|
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
|
|
|
|
|
|
|
|
if len(masks.shape) < 2:
|
|
|
|
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
|
|
|
|
masks = masks[top:bottom, left:right]
|
|
|
|
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
|
|
|
|
if len(masks.shape) == 2:
|
|
|
|
masks = masks[:, :, None]
|
|
|
|
|
|
|
|
return masks
|
|
|
|
|
|
|
|
|
|
|
|
def xyxy2xywh(x):
|
|
|
|
"""
|
|
|
|
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the
|
|
|
|
top-left corner and (x2, y2) is the bottom-right corner.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
|
|
|
|
Returns:
|
|
|
|
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
|
|
|
|
"""
|
|
|
|
assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
|
|
|
|
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
|
|
|
|
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
|
|
|
|
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
|
|
|
|
y[..., 2] = x[..., 2] - x[..., 0] # width
|
|
|
|
y[..., 3] = x[..., 3] - x[..., 1] # height
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def xywh2xyxy(x):
|
|
|
|
"""
|
|
|
|
Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the
|
|
|
|
top-left corner and (x2, y2) is the bottom-right corner.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.
|
|
|
|
Returns:
|
|
|
|
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
|
|
|
|
"""
|
|
|
|
assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
|
|
|
|
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
|
|
|
|
dw = x[..., 2] / 2 # half-width
|
|
|
|
dh = x[..., 3] / 2 # half-height
|
|
|
|
y[..., 0] = x[..., 0] - dw # top left x
|
|
|
|
y[..., 1] = x[..., 1] - dh # top left y
|
|
|
|
y[..., 2] = x[..., 0] + dw # bottom right x
|
|
|
|
y[..., 3] = x[..., 1] + dh # bottom right y
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
|
|
|
"""
|
|
|
|
Convert normalized bounding box coordinates to pixel coordinates.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (np.ndarray | torch.Tensor): The bounding box coordinates.
|
|
|
|
w (int): Width of the image. Defaults to 640
|
|
|
|
h (int): Height of the image. Defaults to 640
|
|
|
|
padw (int): Padding width. Defaults to 0
|
|
|
|
padh (int): Padding height. Defaults to 0
|
|
|
|
Returns:
|
|
|
|
y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where
|
|
|
|
x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.
|
|
|
|
"""
|
|
|
|
assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
|
|
|
|
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
|
|
|
|
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
|
|
|
|
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
|
|
|
|
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
|
|
|
|
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
|
|
|
"""
|
|
|
|
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format.
|
|
|
|
x, y, width and height are normalized to image dimensions
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
|
|
|
|
w (int): The width of the image. Defaults to 640
|
|
|
|
h (int): The height of the image. Defaults to 640
|
|
|
|
clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False
|
|
|
|
eps (float): The minimum value of the box's width and height. Defaults to 0.0
|
|
|
|
Returns:
|
|
|
|
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
|
|
|
|
"""
|
|
|
|
if clip:
|
|
|
|
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
|
|
|
|
assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
|
|
|
|
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
|
|
|
|
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
|
|
|
|
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
|
|
|
|
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
|
|
|
|
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
|
|
|
"""
|
|
|
|
Convert normalized coordinates to pixel coordinates of shape (n,2)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (np.ndarray | torch.Tensor): The input tensor of normalized bounding box coordinates
|
|
|
|
w (int): The width of the image. Defaults to 640
|
|
|
|
h (int): The height of the image. Defaults to 640
|
|
|
|
padw (int): The width of the padding. Defaults to 0
|
|
|
|
padh (int): The height of the padding. Defaults to 0
|
|
|
|
Returns:
|
|
|
|
y (np.ndarray | torch.Tensor): The x and y coordinates of the top left corner of the bounding box
|
|
|
|
"""
|
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
|
|
y[..., 0] = w * x[..., 0] + padw # top left x
|
|
|
|
y[..., 1] = h * x[..., 1] + padh # top left y
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def xywh2ltwh(x):
|
|
|
|
"""
|
|
|
|
Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format
|
|
|
|
Returns:
|
|
|
|
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format
|
|
|
|
"""
|
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
|
|
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
|
|
|
|
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def xyxy2ltwh(x):
|
|
|
|
"""
|
|
|
|
Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format
|
|
|
|
Returns:
|
|
|
|
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
|
|
|
|
"""
|
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
|
|
y[..., 2] = x[..., 2] - x[..., 0] # width
|
|
|
|
y[..., 3] = x[..., 3] - x[..., 1] # height
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def ltwh2xywh(x):
|
|
|
|
"""
|
|
|
|
Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (torch.Tensor): the input tensor
|
|
|
|
"""
|
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
|
|
y[..., 0] = x[..., 0] + x[..., 2] / 2 # center x
|
|
|
|
y[..., 1] = x[..., 1] + x[..., 3] / 2 # center y
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def xyxyxyxy2xywhr(corners):
|
|
|
|
"""
|
|
|
|
Convert batched Oriented Bounding Boxes (OBB) from [xy1, xy2, xy3, xy4] to [xywh, rotation].
|
|
|
|
|
|
|
|
Args:
|
|
|
|
corners (numpy.ndarray | torch.Tensor): Input corners of shape (n, 8).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(numpy.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format of shape (n, 5).
|
|
|
|
"""
|
|
|
|
if isinstance(corners, torch.Tensor):
|
|
|
|
is_numpy = False
|
|
|
|
atan2 = torch.atan2
|
|
|
|
sqrt = torch.sqrt
|
|
|
|
else:
|
|
|
|
is_numpy = True
|
|
|
|
atan2 = np.arctan2
|
|
|
|
sqrt = np.sqrt
|
|
|
|
|
|
|
|
x1, y1, x2, y2, x3, y3, x4, y4 = corners.T
|
|
|
|
cx = (x1 + x3) / 2
|
|
|
|
cy = (y1 + y3) / 2
|
|
|
|
dx21 = x2 - x1
|
|
|
|
dy21 = y2 - y1
|
|
|
|
|
|
|
|
w = sqrt(dx21 ** 2 + dy21 ** 2)
|
|
|
|
h = sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2)
|
|
|
|
|
|
|
|
rotation = atan2(-dy21, dx21)
|
|
|
|
rotation *= 180.0 / math.pi # radians to degrees
|
|
|
|
|
|
|
|
return np.vstack((cx, cy, w, h, rotation)).T if is_numpy else torch.stack((cx, cy, w, h, rotation), dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
def xywhr2xyxyxyxy(center):
|
|
|
|
"""
|
|
|
|
Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4].
|
|
|
|
|
|
|
|
Args:
|
|
|
|
center (numpy.ndarray | torch.Tensor): Input data in [cx, cy, w, h, rotation] format of shape (n, 5).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 8).
|
|
|
|
"""
|
|
|
|
if isinstance(center, torch.Tensor):
|
|
|
|
is_numpy = False
|
|
|
|
cos = torch.cos
|
|
|
|
sin = torch.sin
|
|
|
|
else:
|
|
|
|
is_numpy = True
|
|
|
|
cos = np.cos
|
|
|
|
sin = np.sin
|
|
|
|
|
|
|
|
cx, cy, w, h, rotation = center.T
|
|
|
|
rotation *= math.pi / 180.0 # degrees to radians
|
|
|
|
|
|
|
|
dx = w / 2
|
|
|
|
dy = h / 2
|
|
|
|
|
|
|
|
cos_rot = cos(rotation)
|
|
|
|
sin_rot = sin(rotation)
|
|
|
|
dx_cos_rot = dx * cos_rot
|
|
|
|
dx_sin_rot = dx * sin_rot
|
|
|
|
dy_cos_rot = dy * cos_rot
|
|
|
|
dy_sin_rot = dy * sin_rot
|
|
|
|
|
|
|
|
x1 = cx - dx_cos_rot - dy_sin_rot
|
|
|
|
y1 = cy + dx_sin_rot - dy_cos_rot
|
|
|
|
x2 = cx + dx_cos_rot - dy_sin_rot
|
|
|
|
y2 = cy - dx_sin_rot - dy_cos_rot
|
|
|
|
x3 = cx + dx_cos_rot + dy_sin_rot
|
|
|
|
y3 = cy - dx_sin_rot + dy_cos_rot
|
|
|
|
x4 = cx - dx_cos_rot + dy_sin_rot
|
|
|
|
y4 = cy + dx_sin_rot + dy_cos_rot
|
|
|
|
|
|
|
|
return np.vstack((x1, y1, x2, y2, x3, y3, x4, y4)).T if is_numpy else torch.stack(
|
|
|
|
(x1, y1, x2, y2, x3, y3, x4, y4), dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
def ltwh2xyxy(x):
|
|
|
|
"""
|
|
|
|
It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (np.ndarray | torch.Tensor): the input image
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
|
|
|
|
"""
|
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
|
|
y[..., 2] = x[..., 2] + x[..., 0] # width
|
|
|
|
y[..., 3] = x[..., 3] + x[..., 1] # height
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
def segments2boxes(segments):
|
|
|
|
"""
|
|
|
|
It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(np.ndarray): the xywh coordinates of the bounding boxes.
|
|
|
|
"""
|
|
|
|
boxes = []
|
|
|
|
for s in segments:
|
|
|
|
x, y = s.T # segment xy
|
|
|
|
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
|
|
|
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
|
|
|
|
|
|
|
|
|
|
|
def resample_segments(segments, n=1000):
|
|
|
|
"""
|
|
|
|
Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
segments (list): a list of (n,2) arrays, where n is the number of points in the segment.
|
|
|
|
n (int): number of points to resample the segment to. Defaults to 1000
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
segments (list): the resampled segments.
|
|
|
|
"""
|
|
|
|
for i, s in enumerate(segments):
|
|
|
|
s = np.concatenate((s, s[0:1, :]), axis=0)
|
|
|
|
x = np.linspace(0, len(s) - 1, n)
|
|
|
|
xp = np.arange(len(s))
|
|
|
|
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)],
|
|
|
|
dtype=np.float32).reshape(2, -1).T # segment xy
|
|
|
|
return segments
|
|
|
|
|
|
|
|
|
|
|
|
def crop_mask(masks, boxes):
|
|
|
|
"""
|
|
|
|
It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box
|
|
|
|
|
|
|
|
Args:
|
|
|
|
masks (torch.Tensor): [n, h, w] tensor of masks
|
|
|
|
boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(torch.Tensor): The masks are being cropped to the bounding box.
|
|
|
|
"""
|
|
|
|
n, h, w = masks.shape
|
|
|
|
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1)
|
|
|
|
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,1,w)
|
|
|
|
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(1,h,1)
|
|
|
|
|
|
|
|
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
|
|
|
|
|
|
|
|
|
|
|
|
def process_mask_upsample(protos, masks_in, bboxes, shape):
|
|
|
|
"""
|
|
|
|
It takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
|
|
|
|
quality but is slower.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
|
|
|
|
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
|
|
|
|
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
|
|
|
|
shape (tuple): the size of the input image (h,w)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(torch.Tensor): The upsampled masks.
|
|
|
|
"""
|
|
|
|
c, mh, mw = protos.shape # CHW
|
|
|
|
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
|
|
|
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
|
|
|
masks = crop_mask(masks, bboxes) # CHW
|
|
|
|
return masks.gt_(0.5)
|
|
|
|
|
|
|
|
|
|
|
|
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
|
|
|
|
"""
|
|
|
|
Apply masks to bounding boxes using the output of the mask head.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w].
|
|
|
|
masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS.
|
|
|
|
bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS.
|
|
|
|
shape (tuple): A tuple of integers representing the size of the input image in the format (h, w).
|
|
|
|
upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w
|
|
|
|
are the height and width of the input image. The mask is applied to the bounding boxes.
|
|
|
|
"""
|
|
|
|
|
|
|
|
c, mh, mw = protos.shape # CHW
|
|
|
|
ih, iw = shape
|
|
|
|
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
|
|
|
|
|
|
|
|
downsampled_bboxes = bboxes.clone()
|
|
|
|
downsampled_bboxes[:, 0] *= mw / iw
|
|
|
|
downsampled_bboxes[:, 2] *= mw / iw
|
|
|
|
downsampled_bboxes[:, 3] *= mh / ih
|
|
|
|
downsampled_bboxes[:, 1] *= mh / ih
|
|
|
|
|
|
|
|
masks = crop_mask(masks, downsampled_bboxes) # CHW
|
|
|
|
if upsample:
|
|
|
|
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
|
|
|
return masks.gt_(0.5)
|
|
|
|
|
|
|
|
|
|
|
|
def process_mask_native(protos, masks_in, bboxes, shape):
|
|
|
|
"""
|
|
|
|
It takes the output of the mask head, and crops it after upsampling to the bounding boxes.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
|
|
|
|
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
|
|
|
|
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
|
|
|
|
shape (tuple): the size of the input image (h,w)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
masks (torch.Tensor): The returned masks with dimensions [h, w, n]
|
|
|
|
"""
|
|
|
|
c, mh, mw = protos.shape # CHW
|
|
|
|
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
|
|
|
masks = scale_masks(masks[None], shape)[0] # CHW
|
|
|
|
masks = crop_mask(masks, bboxes) # CHW
|
|
|
|
return masks.gt_(0.5)
|
|
|
|
|
|
|
|
|
|
|
|
def scale_masks(masks, shape, padding=True):
|
|
|
|
"""
|
|
|
|
Rescale segment masks to shape.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
masks (torch.Tensor): (N, C, H, W).
|
|
|
|
shape (tuple): Height and width.
|
|
|
|
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
|
|
|
|
rescaling.
|
|
|
|
"""
|
|
|
|
mh, mw = masks.shape[2:]
|
|
|
|
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
|
|
|
|
pad = [mw - shape[1] * gain, mh - shape[0] * gain] # wh padding
|
|
|
|
if padding:
|
|
|
|
pad[0] /= 2
|
|
|
|
pad[1] /= 2
|
|
|
|
top, left = (int(pad[1]), int(pad[0])) if padding else (0, 0) # y, x
|
|
|
|
bottom, right = (int(mh - pad[1]), int(mw - pad[0]))
|
|
|
|
masks = masks[..., top:bottom, left:right]
|
|
|
|
|
|
|
|
masks = F.interpolate(masks, shape, mode='bilinear', align_corners=False) # NCHW
|
|
|
|
return masks
|
|
|
|
|
|
|
|
|
|
|
|
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True):
|
|
|
|
"""
|
|
|
|
Rescale segment coordinates (xyxy) from img1_shape to img0_shape
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img1_shape (tuple): The shape of the image that the coords are from.
|
|
|
|
coords (torch.Tensor): the coords to be scaled
|
|
|
|
img0_shape (tuple): the shape of the image that the segmentation is being applied to
|
|
|
|
ratio_pad (tuple): the ratio of the image size to the padded image size.
|
|
|
|
normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False
|
|
|
|
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
|
|
|
|
rescaling.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
coords (torch.Tensor): the segmented image.
|
|
|
|
"""
|
|
|
|
if ratio_pad is None: # calculate from img0_shape
|
|
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
|
|
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
|
|
|
else:
|
|
|
|
gain = ratio_pad[0][0]
|
|
|
|
pad = ratio_pad[1]
|
|
|
|
|
|
|
|
if padding:
|
|
|
|
coords[..., 0] -= pad[0] # x padding
|
|
|
|
coords[..., 1] -= pad[1] # y padding
|
|
|
|
coords[..., 0] /= gain
|
|
|
|
coords[..., 1] /= gain
|
|
|
|
clip_coords(coords, img0_shape)
|
|
|
|
if normalize:
|
|
|
|
coords[..., 0] /= img0_shape[1] # width
|
|
|
|
coords[..., 1] /= img0_shape[0] # height
|
|
|
|
return coords
|
|
|
|
|
|
|
|
|
|
|
|
def masks2segments(masks, strategy='largest'):
|
|
|
|
"""
|
|
|
|
It takes a list of masks(n,h,w) and returns a list of segments(n,xy)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160)
|
|
|
|
strategy (str): 'concat' or 'largest'. Defaults to largest
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
segments (List): list of segment masks
|
|
|
|
"""
|
|
|
|
segments = []
|
|
|
|
for x in masks.int().cpu().numpy().astype('uint8'):
|
|
|
|
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
|
|
|
if c:
|
|
|
|
if strategy == 'concat': # concatenate all segments
|
|
|
|
c = np.concatenate([x.reshape(-1, 2) for x in c])
|
|
|
|
elif strategy == 'largest': # select largest segment
|
|
|
|
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
|
|
|
|
else:
|
|
|
|
c = np.zeros((0, 2)) # no segments found
|
|
|
|
segments.append(c.astype('float32'))
|
|
|
|
return segments
|
|
|
|
|
|
|
|
|
|
|
|
def clean_str(s):
|
|
|
|
"""
|
|
|
|
Cleans a string by replacing special characters with underscore _
|
|
|
|
|
|
|
|
Args:
|
|
|
|
s (str): a string needing special characters replaced
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(str): a string with special characters replaced by an underscore _
|
|
|
|
"""
|
|
|
|
return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s)
|