|
|
|
@ -117,11 +117,11 @@ success = YOLO("yolov8n.pt").export(format="onnx") # 将模型导出为 ONNX
|
|
|
|
|
|
|
|
|
|
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | 推理速度<br><sup>CPU ONNX<br>(ms) | 推理速度<br><sup>A100 TensorRT<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
|
|
|
| ------------------------------------------------------------------------------------ | --------------- | -------------------- | ----------------------------- | ---------------------------------- | --------------- | ----------------- |
|
|
|
|
|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | - | 0.99 | 3.2 | 8.7 |
|
|
|
|
|
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | - | 1.20 | 11.2 | 28.6 |
|
|
|
|
|
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | - | 1.83 | 25.9 | 78.9 |
|
|
|
|
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | - | 2.39 | 43.7 | 165.2 |
|
|
|
|
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | - | 3.53 | 68.2 | 257.8 |
|
|
|
|
|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
|
|
|
|
|
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
|
|
|
|
|
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
|
|
|
|
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
|
|
|
|
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
|
|
|
|
|
|
|
|
|
|
- **mAP<sup>val</sup>** 结果都在 [COCO val2017](http://cocodataset.org) 数据集上,使用单模型单尺度测试得到。
|
|
|
|
|
<br>复现命令 `yolo mode=val task=detect data=coco.yaml device=0`
|
|
|
|
@ -132,13 +132,13 @@ success = YOLO("yolov8n.pt").export(format="onnx") # 将模型导出为 ONNX
|
|
|
|
|
|
|
|
|
|
<details><summary>实例分割</summary>
|
|
|
|
|
|
|
|
|
|
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 推理速度<br><sup>CPU ONNX<br>(ms) | 推理速度<br><sup>A100 TensorRT<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
|
|
|
| --------------------------------------------------------------------------------------------- | --------------- | -------------------- | --------------------- | ----------------------------- | ---------------------------------- | --------------- | ----------------- |
|
|
|
|
|
| [YOLOv8n](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | - | - | 3.4 | 12.6 |
|
|
|
|
|
| [YOLOv8s](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | - | - | 11.8 | 42.6 |
|
|
|
|
|
| [YOLOv8m](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | - | - | 27.3 | 110.2 |
|
|
|
|
|
| [YOLOv8l](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | - | - | 46.0 | 220.5 |
|
|
|
|
|
| [YOLOv8x](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | - | - | 71.8 | 344.1 |
|
|
|
|
|
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 推理速度<br><sup>CPU ONNX<br>(ms) | 推理速度<br><sup>A100 TensorRT<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
|
|
|
| ---------------------------------------------------------------------------------------- | --------------- | -------------------- | --------------------- | ----------------------------- | ---------------------------------- | --------------- | ----------------- |
|
|
|
|
|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.11 | 1.21 | 3.4 | 12.6 |
|
|
|
|
|
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
|
|
|
|
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
|
|
|
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
|
|
|
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
|
|
|
|
|
|
|
|
|
- **mAP<sup>val</sup>** 结果都在 [COCO val2017](http://cocodataset.org) 数据集上,使用单模型单尺度测试得到。
|
|
|
|
|
<br>复现命令 `yolo mode=val task=detect data=coco.yaml device=0`
|
|
|
|
@ -149,15 +149,15 @@ success = YOLO("yolov8n.pt").export(format="onnx") # 将模型导出为 ONNX
|
|
|
|
|
|
|
|
|
|
<details><summary>分类</summary>
|
|
|
|
|
|
|
|
|
|
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 推理速度<br><sup>CPU ONNX<br>(ms) | 推理速度<br><sup>A100 TensorRT<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
|
|
|
| --------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | ----------------------------- | ---------------------------------- | --------------- | ------------------------ |
|
|
|
|
|
| [YOLOv8n](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | - | - | 2.7 | 4.3 |
|
|
|
|
|
| [YOLOv8s](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | - | - | 6.4 | 13.5 |
|
|
|
|
|
| [YOLOv8m](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | - | - | 17.0 | 42.7 |
|
|
|
|
|
| [YOLOv8l](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | - | - | 37.5 | 99.7 |
|
|
|
|
|
| [YOLOv8x](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | - | - | 57.4 | 154.8 |
|
|
|
|
|
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 推理速度<br><sup>CPU ONNX<br>(ms) | 推理速度<br><sup>A100 TensorRT<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
|
|
|
| ---------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | ----------------------------- | ---------------------------------- | --------------- | ------------------------ |
|
|
|
|
|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
|
|
|
|
|
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
|
|
|
|
|
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
|
|
|
|
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
|
|
|
|
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
|
|
|
|
|
|
|
|
|
|
- **mAP<sup>val</sup>** 都在 [ImageNet](https://www.image-net.org/) 数据集上,使用单模型单尺度测试得到。
|
|
|
|
|
- **acc** 都在 [ImageNet](https://www.image-net.org/) 数据集上,使用单模型单尺度测试得到。
|
|
|
|
|
<br>复现命令 `yolo mode=val task=detect data=coco.yaml device=0`
|
|
|
|
|
- **推理速度**使用 ImageNet 验证集图片推理时间进行平均得到,测试环境使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例。
|
|
|
|
|
<br>复现命令 `yolo mode=val task=detect data=coco128.yaml batch=1 device=0/cpu`
|
|
|
|
|