Docstrings arguments cleanup (#3229)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 62916b3b0a
commit bd0f7ecf6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -43,8 +43,8 @@ def create_markdown(py_filepath, module_path, classes, functions):
header_content = f"{header_parts[0]}---{header_parts[1]}---\n\n"
module_path = module_path.replace('.__init__', '')
md_content = [f"# {class_name}\n---\n:::{module_path}.{class_name}\n<br><br>\n" for class_name in classes]
md_content.extend(f"# {func_name}\n---\n:::{module_path}.{func_name}\n<br><br>\n" for func_name in functions)
md_content = [f"## {class_name}\n---\n### ::: {module_path}.{class_name}\n<br><br>\n" for class_name in classes]
md_content.extend(f"## {func_name}\n---\n### ::: {module_path}.{func_name}\n<br><br>\n" for func_name in functions)
md_content = header_content + "\n".join(md_content)
os.makedirs(os.path.dirname(md_filepath), exist_ok=True)

@ -3,42 +3,42 @@ description: Access Ultralytics HUB, manage API keys, train models, and export i
keywords: Ultralytics, YOLO, Docs HUB, API, login, logout, reset model, export model, check dataset, HUBDatasetStats, YOLO training, YOLO model
---
# login
## login
---
:::ultralytics.hub.login
### ::: ultralytics.hub.login
<br><br>
# logout
## logout
---
:::ultralytics.hub.logout
### ::: ultralytics.hub.logout
<br><br>
# start
## start
---
:::ultralytics.hub.start
### ::: ultralytics.hub.start
<br><br>
# reset_model
## reset_model
---
:::ultralytics.hub.reset_model
### ::: ultralytics.hub.reset_model
<br><br>
# export_fmts_hub
## export_fmts_hub
---
:::ultralytics.hub.export_fmts_hub
### ::: ultralytics.hub.export_fmts_hub
<br><br>
# export_model
## export_model
---
:::ultralytics.hub.export_model
### ::: ultralytics.hub.export_model
<br><br>
# get_export
## get_export
---
:::ultralytics.hub.get_export
### ::: ultralytics.hub.get_export
<br><br>
# check_dataset
## check_dataset
---
:::ultralytics.hub.check_dataset
### ::: ultralytics.hub.check_dataset
<br><br>

@ -3,7 +3,7 @@ description: Learn how to use Ultralytics hub authentication in your projects wi
keywords: Ultralytics, ultralytics hub, api keys, authentication, collab accounts, requests, hub management, monitoring
---
# Auth
## Auth
---
:::ultralytics.hub.auth.Auth
### ::: ultralytics.hub.auth.Auth
<br><br>

@ -3,7 +3,7 @@ description: Accelerate your AI development with the Ultralytics HUB Training Se
keywords: YOLOv5, object detection, HUBTrainingSession, custom models, Ultralytics Docs
---
# HUBTrainingSession
## HUBTrainingSession
---
:::ultralytics.hub.session.HUBTrainingSession
### ::: ultralytics.hub.session.HUBTrainingSession
<br><br>

@ -3,22 +3,22 @@ description: Explore Ultralytics events, including 'request_with_credentials' an
keywords: Ultralytics, Hub Utils, API Documentation, Python, requests_with_progress, Events, classes, usage, examples
---
# Events
## Events
---
:::ultralytics.hub.utils.Events
### ::: ultralytics.hub.utils.Events
<br><br>
# request_with_credentials
## request_with_credentials
---
:::ultralytics.hub.utils.request_with_credentials
### ::: ultralytics.hub.utils.request_with_credentials
<br><br>
# requests_with_progress
## requests_with_progress
---
:::ultralytics.hub.utils.requests_with_progress
### ::: ultralytics.hub.utils.requests_with_progress
<br><br>
# smart_request
## smart_request
---
:::ultralytics.hub.utils.smart_request
### ::: ultralytics.hub.utils.smart_request
<br><br>

@ -3,12 +3,12 @@ description: Ensure class names match filenames for easy imports. Use AutoBacken
keywords: AutoBackend, ultralytics, nn, autobackend, check class names, neural network
---
# AutoBackend
## AutoBackend
---
:::ultralytics.nn.autobackend.AutoBackend
### ::: ultralytics.nn.autobackend.AutoBackend
<br><br>
# check_class_names
## check_class_names
---
:::ultralytics.nn.autobackend.check_class_names
### ::: ultralytics.nn.autobackend.check_class_names
<br><br>

@ -3,12 +3,12 @@ description: Detect 80+ object categories with bounding box coordinates and clas
keywords: Ultralytics, YOLO, docs, autoshape, detections, object detection, customized shapes, bounding boxes, computer vision
---
# AutoShape
## AutoShape
---
:::ultralytics.nn.autoshape.AutoShape
### ::: ultralytics.nn.autoshape.AutoShape
<br><br>
# Detections
## Detections
---
:::ultralytics.nn.autoshape.Detections
### ::: ultralytics.nn.autoshape.Detections
<br><br>

@ -3,87 +3,87 @@ description: Explore ultralytics.nn.modules.block to build powerful YOLO object
keywords: Ultralytics, NN Modules, Blocks, DFL, HGStem, SPP, C1, C2f, C3x, C3TR, GhostBottleneck, BottleneckCSP, Computer Vision
---
# DFL
## DFL
---
:::ultralytics.nn.modules.block.DFL
### ::: ultralytics.nn.modules.block.DFL
<br><br>
# Proto
## Proto
---
:::ultralytics.nn.modules.block.Proto
### ::: ultralytics.nn.modules.block.Proto
<br><br>
# HGStem
## HGStem
---
:::ultralytics.nn.modules.block.HGStem
### ::: ultralytics.nn.modules.block.HGStem
<br><br>
# HGBlock
## HGBlock
---
:::ultralytics.nn.modules.block.HGBlock
### ::: ultralytics.nn.modules.block.HGBlock
<br><br>
# SPP
## SPP
---
:::ultralytics.nn.modules.block.SPP
### ::: ultralytics.nn.modules.block.SPP
<br><br>
# SPPF
## SPPF
---
:::ultralytics.nn.modules.block.SPPF
### ::: ultralytics.nn.modules.block.SPPF
<br><br>
# C1
## C1
---
:::ultralytics.nn.modules.block.C1
### ::: ultralytics.nn.modules.block.C1
<br><br>
# C2
## C2
---
:::ultralytics.nn.modules.block.C2
### ::: ultralytics.nn.modules.block.C2
<br><br>
# C2f
## C2f
---
:::ultralytics.nn.modules.block.C2f
### ::: ultralytics.nn.modules.block.C2f
<br><br>
# C3
## C3
---
:::ultralytics.nn.modules.block.C3
### ::: ultralytics.nn.modules.block.C3
<br><br>
# C3x
## C3x
---
:::ultralytics.nn.modules.block.C3x
### ::: ultralytics.nn.modules.block.C3x
<br><br>
# RepC3
## RepC3
---
:::ultralytics.nn.modules.block.RepC3
### ::: ultralytics.nn.modules.block.RepC3
<br><br>
# C3TR
## C3TR
---
:::ultralytics.nn.modules.block.C3TR
### ::: ultralytics.nn.modules.block.C3TR
<br><br>
# C3Ghost
## C3Ghost
---
:::ultralytics.nn.modules.block.C3Ghost
### ::: ultralytics.nn.modules.block.C3Ghost
<br><br>
# GhostBottleneck
## GhostBottleneck
---
:::ultralytics.nn.modules.block.GhostBottleneck
### ::: ultralytics.nn.modules.block.GhostBottleneck
<br><br>
# Bottleneck
## Bottleneck
---
:::ultralytics.nn.modules.block.Bottleneck
### ::: ultralytics.nn.modules.block.Bottleneck
<br><br>
# BottleneckCSP
## BottleneckCSP
---
:::ultralytics.nn.modules.block.BottleneckCSP
### ::: ultralytics.nn.modules.block.BottleneckCSP
<br><br>

@ -3,72 +3,72 @@ description: Explore convolutional neural network modules & techniques such as L
keywords: Ultralytics, Convolutional Neural Network, Conv2, DWConv, ConvTranspose, GhostConv, ChannelAttention, CBAM, autopad
---
# Conv
## Conv
---
:::ultralytics.nn.modules.conv.Conv
### ::: ultralytics.nn.modules.conv.Conv
<br><br>
# Conv2
## Conv2
---
:::ultralytics.nn.modules.conv.Conv2
### ::: ultralytics.nn.modules.conv.Conv2
<br><br>
# LightConv
## LightConv
---
:::ultralytics.nn.modules.conv.LightConv
### ::: ultralytics.nn.modules.conv.LightConv
<br><br>
# DWConv
## DWConv
---
:::ultralytics.nn.modules.conv.DWConv
### ::: ultralytics.nn.modules.conv.DWConv
<br><br>
# DWConvTranspose2d
## DWConvTranspose2d
---
:::ultralytics.nn.modules.conv.DWConvTranspose2d
### ::: ultralytics.nn.modules.conv.DWConvTranspose2d
<br><br>
# ConvTranspose
## ConvTranspose
---
:::ultralytics.nn.modules.conv.ConvTranspose
### ::: ultralytics.nn.modules.conv.ConvTranspose
<br><br>
# Focus
## Focus
---
:::ultralytics.nn.modules.conv.Focus
### ::: ultralytics.nn.modules.conv.Focus
<br><br>
# GhostConv
## GhostConv
---
:::ultralytics.nn.modules.conv.GhostConv
### ::: ultralytics.nn.modules.conv.GhostConv
<br><br>
# RepConv
## RepConv
---
:::ultralytics.nn.modules.conv.RepConv
### ::: ultralytics.nn.modules.conv.RepConv
<br><br>
# ChannelAttention
## ChannelAttention
---
:::ultralytics.nn.modules.conv.ChannelAttention
### ::: ultralytics.nn.modules.conv.ChannelAttention
<br><br>
# SpatialAttention
## SpatialAttention
---
:::ultralytics.nn.modules.conv.SpatialAttention
### ::: ultralytics.nn.modules.conv.SpatialAttention
<br><br>
# CBAM
## CBAM
---
:::ultralytics.nn.modules.conv.CBAM
### ::: ultralytics.nn.modules.conv.CBAM
<br><br>
# Concat
## Concat
---
:::ultralytics.nn.modules.conv.Concat
### ::: ultralytics.nn.modules.conv.Concat
<br><br>
# autopad
## autopad
---
:::ultralytics.nn.modules.conv.autopad
### ::: ultralytics.nn.modules.conv.autopad
<br><br>

@ -3,27 +3,27 @@ description: 'Learn about Ultralytics YOLO modules: Segment, Classify, and RTDET
keywords: Ultralytics, YOLO, object detection, pose estimation, RTDETRDecoder, modules, classes, documentation
---
# Detect
## Detect
---
:::ultralytics.nn.modules.head.Detect
### ::: ultralytics.nn.modules.head.Detect
<br><br>
# Segment
## Segment
---
:::ultralytics.nn.modules.head.Segment
### ::: ultralytics.nn.modules.head.Segment
<br><br>
# Pose
## Pose
---
:::ultralytics.nn.modules.head.Pose
### ::: ultralytics.nn.modules.head.Pose
<br><br>
# Classify
## Classify
---
:::ultralytics.nn.modules.head.Classify
### ::: ultralytics.nn.modules.head.Classify
<br><br>
# RTDETRDecoder
## RTDETRDecoder
---
:::ultralytics.nn.modules.head.RTDETRDecoder
### ::: ultralytics.nn.modules.head.RTDETRDecoder
<br><br>

@ -3,52 +3,52 @@ description: Explore the Ultralytics nn modules pages on Transformer and MLP blo
keywords: Ultralytics, NN Modules, TransformerEncoderLayer, TransformerLayer, MLPBlock, LayerNorm2d, DeformableTransformerDecoderLayer, examples, code snippets, tutorials
---
# TransformerEncoderLayer
## TransformerEncoderLayer
---
:::ultralytics.nn.modules.transformer.TransformerEncoderLayer
### ::: ultralytics.nn.modules.transformer.TransformerEncoderLayer
<br><br>
# AIFI
## AIFI
---
:::ultralytics.nn.modules.transformer.AIFI
### ::: ultralytics.nn.modules.transformer.AIFI
<br><br>
# TransformerLayer
## TransformerLayer
---
:::ultralytics.nn.modules.transformer.TransformerLayer
### ::: ultralytics.nn.modules.transformer.TransformerLayer
<br><br>
# TransformerBlock
## TransformerBlock
---
:::ultralytics.nn.modules.transformer.TransformerBlock
### ::: ultralytics.nn.modules.transformer.TransformerBlock
<br><br>
# MLPBlock
## MLPBlock
---
:::ultralytics.nn.modules.transformer.MLPBlock
### ::: ultralytics.nn.modules.transformer.MLPBlock
<br><br>
# MLP
## MLP
---
:::ultralytics.nn.modules.transformer.MLP
### ::: ultralytics.nn.modules.transformer.MLP
<br><br>
# LayerNorm2d
## LayerNorm2d
---
:::ultralytics.nn.modules.transformer.LayerNorm2d
### ::: ultralytics.nn.modules.transformer.LayerNorm2d
<br><br>
# MSDeformAttn
## MSDeformAttn
---
:::ultralytics.nn.modules.transformer.MSDeformAttn
### ::: ultralytics.nn.modules.transformer.MSDeformAttn
<br><br>
# DeformableTransformerDecoderLayer
## DeformableTransformerDecoderLayer
---
:::ultralytics.nn.modules.transformer.DeformableTransformerDecoderLayer
### ::: ultralytics.nn.modules.transformer.DeformableTransformerDecoderLayer
<br><br>
# DeformableTransformerDecoder
## DeformableTransformerDecoder
---
:::ultralytics.nn.modules.transformer.DeformableTransformerDecoder
### ::: ultralytics.nn.modules.transformer.DeformableTransformerDecoder
<br><br>

@ -3,27 +3,27 @@ description: 'Learn about Ultralytics NN modules: get_clones, linear_init_, and
keywords: Ultralytics, NN Utils, Docs, PyTorch, bias initialization, linear initialization, multi-scale deformable attention
---
# _get_clones
## _get_clones
---
:::ultralytics.nn.modules.utils._get_clones
### ::: ultralytics.nn.modules.utils._get_clones
<br><br>
# bias_init_with_prob
## bias_init_with_prob
---
:::ultralytics.nn.modules.utils.bias_init_with_prob
### ::: ultralytics.nn.modules.utils.bias_init_with_prob
<br><br>
# linear_init_
## linear_init_
---
:::ultralytics.nn.modules.utils.linear_init_
### ::: ultralytics.nn.modules.utils.linear_init_
<br><br>
# inverse_sigmoid
## inverse_sigmoid
---
:::ultralytics.nn.modules.utils.inverse_sigmoid
### ::: ultralytics.nn.modules.utils.inverse_sigmoid
<br><br>
# multi_scale_deformable_attn_pytorch
## multi_scale_deformable_attn_pytorch
---
:::ultralytics.nn.modules.utils.multi_scale_deformable_attn_pytorch
### ::: ultralytics.nn.modules.utils.multi_scale_deformable_attn_pytorch
<br><br>

@ -3,72 +3,72 @@ description: Learn how to work with Ultralytics YOLO Detection, Segmentation & C
keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch
---
# BaseModel
## BaseModel
---
:::ultralytics.nn.tasks.BaseModel
### ::: ultralytics.nn.tasks.BaseModel
<br><br>
# DetectionModel
## DetectionModel
---
:::ultralytics.nn.tasks.DetectionModel
### ::: ultralytics.nn.tasks.DetectionModel
<br><br>
# SegmentationModel
## SegmentationModel
---
:::ultralytics.nn.tasks.SegmentationModel
### ::: ultralytics.nn.tasks.SegmentationModel
<br><br>
# PoseModel
## PoseModel
---
:::ultralytics.nn.tasks.PoseModel
### ::: ultralytics.nn.tasks.PoseModel
<br><br>
# ClassificationModel
## ClassificationModel
---
:::ultralytics.nn.tasks.ClassificationModel
### ::: ultralytics.nn.tasks.ClassificationModel
<br><br>
# RTDETRDetectionModel
## RTDETRDetectionModel
---
:::ultralytics.nn.tasks.RTDETRDetectionModel
### ::: ultralytics.nn.tasks.RTDETRDetectionModel
<br><br>
# Ensemble
## Ensemble
---
:::ultralytics.nn.tasks.Ensemble
### ::: ultralytics.nn.tasks.Ensemble
<br><br>
# torch_safe_load
## torch_safe_load
---
:::ultralytics.nn.tasks.torch_safe_load
### ::: ultralytics.nn.tasks.torch_safe_load
<br><br>
# attempt_load_weights
## attempt_load_weights
---
:::ultralytics.nn.tasks.attempt_load_weights
### ::: ultralytics.nn.tasks.attempt_load_weights
<br><br>
# attempt_load_one_weight
## attempt_load_one_weight
---
:::ultralytics.nn.tasks.attempt_load_one_weight
### ::: ultralytics.nn.tasks.attempt_load_one_weight
<br><br>
# parse_model
## parse_model
---
:::ultralytics.nn.tasks.parse_model
### ::: ultralytics.nn.tasks.parse_model
<br><br>
# yaml_model_load
## yaml_model_load
---
:::ultralytics.nn.tasks.yaml_model_load
### ::: ultralytics.nn.tasks.yaml_model_load
<br><br>
# guess_model_scale
## guess_model_scale
---
:::ultralytics.nn.tasks.guess_model_scale
### ::: ultralytics.nn.tasks.guess_model_scale
<br><br>
# guess_model_task
## guess_model_task
---
:::ultralytics.nn.tasks.guess_model_task
### ::: ultralytics.nn.tasks.guess_model_task
<br><br>

@ -3,17 +3,17 @@ description: Learn how to register custom event-tracking and track predictions w
keywords: Ultralytics YOLO, tracker registration, on_predict_start, object detection
---
# on_predict_start
## on_predict_start
---
:::ultralytics.tracker.track.on_predict_start
### ::: ultralytics.tracker.track.on_predict_start
<br><br>
# on_predict_postprocess_end
## on_predict_postprocess_end
---
:::ultralytics.tracker.track.on_predict_postprocess_end
### ::: ultralytics.tracker.track.on_predict_postprocess_end
<br><br>
# register_tracker
## register_tracker
---
:::ultralytics.tracker.track.register_tracker
### ::: ultralytics.tracker.track.register_tracker
<br><br>

@ -3,12 +3,12 @@ description: 'TrackState: A comprehensive guide to Ultralytics tracker''s BaseTr
keywords: object detection, object tracking, Ultralytics YOLO, TrackState, workflow improvement
---
# TrackState
## TrackState
---
:::ultralytics.tracker.trackers.basetrack.TrackState
### ::: ultralytics.tracker.trackers.basetrack.TrackState
<br><br>
# BaseTrack
## BaseTrack
---
:::ultralytics.tracker.trackers.basetrack.BaseTrack
### ::: ultralytics.tracker.trackers.basetrack.BaseTrack
<br><br>

@ -3,12 +3,12 @@ description: '"Optimize tracking with Ultralytics BOTrack. Easily sort and track
keywords: BOTrack, Ultralytics YOLO Docs, features, usage
---
# BOTrack
## BOTrack
---
:::ultralytics.tracker.trackers.bot_sort.BOTrack
### ::: ultralytics.tracker.trackers.bot_sort.BOTrack
<br><br>
# BOTSORT
## BOTSORT
---
:::ultralytics.tracker.trackers.bot_sort.BOTSORT
### ::: ultralytics.tracker.trackers.bot_sort.BOTSORT
<br><br>

@ -3,12 +3,12 @@ description: Learn how to track ByteAI model sizes and tips for model optimizati
keywords: Byte Tracker, Ultralytics STrack, application monitoring, bytes sent, bytes received, code examples, setup instructions
---
# STrack
## STrack
---
:::ultralytics.tracker.trackers.byte_tracker.STrack
### ::: ultralytics.tracker.trackers.byte_tracker.STrack
<br><br>
# BYTETracker
## BYTETracker
---
:::ultralytics.tracker.trackers.byte_tracker.BYTETracker
### ::: ultralytics.tracker.trackers.byte_tracker.BYTETracker
<br><br>

@ -3,7 +3,7 @@ description: '"Track Google Marketing Campaigns in GMC with Ultralytics Tracker.
keywords: Ultralytics, YOLO, object detection, tracker, optimization, models, documentation
---
# GMC
## GMC
---
:::ultralytics.tracker.utils.gmc.GMC
### ::: ultralytics.tracker.utils.gmc.GMC
<br><br>

@ -3,12 +3,12 @@ description: Improve object tracking with KalmanFilterXYAH in Ultralytics YOLO -
keywords: KalmanFilterXYAH, Ultralytics Docs, Kalman filter algorithm, object tracking, computer vision, YOLO
---
# KalmanFilterXYAH
## KalmanFilterXYAH
---
:::ultralytics.tracker.utils.kalman_filter.KalmanFilterXYAH
### ::: ultralytics.tracker.utils.kalman_filter.KalmanFilterXYAH
<br><br>
# KalmanFilterXYWH
## KalmanFilterXYWH
---
:::ultralytics.tracker.utils.kalman_filter.KalmanFilterXYWH
### ::: ultralytics.tracker.utils.kalman_filter.KalmanFilterXYWH
<br><br>

@ -3,62 +3,62 @@ description: Learn how to match and fuse object detections for accurate target t
keywords: Ultralytics, multi-object tracking, object tracking, detection, recognition, matching, indices, iou distance, gate cost matrix, fuse iou, bbox ious
---
# merge_matches
## merge_matches
---
:::ultralytics.tracker.utils.matching.merge_matches
### ::: ultralytics.tracker.utils.matching.merge_matches
<br><br>
# _indices_to_matches
## _indices_to_matches
---
:::ultralytics.tracker.utils.matching._indices_to_matches
### ::: ultralytics.tracker.utils.matching._indices_to_matches
<br><br>
# linear_assignment
## linear_assignment
---
:::ultralytics.tracker.utils.matching.linear_assignment
### ::: ultralytics.tracker.utils.matching.linear_assignment
<br><br>
# ious
## ious
---
:::ultralytics.tracker.utils.matching.ious
### ::: ultralytics.tracker.utils.matching.ious
<br><br>
# iou_distance
## iou_distance
---
:::ultralytics.tracker.utils.matching.iou_distance
### ::: ultralytics.tracker.utils.matching.iou_distance
<br><br>
# v_iou_distance
## v_iou_distance
---
:::ultralytics.tracker.utils.matching.v_iou_distance
### ::: ultralytics.tracker.utils.matching.v_iou_distance
<br><br>
# embedding_distance
## embedding_distance
---
:::ultralytics.tracker.utils.matching.embedding_distance
### ::: ultralytics.tracker.utils.matching.embedding_distance
<br><br>
# gate_cost_matrix
## gate_cost_matrix
---
:::ultralytics.tracker.utils.matching.gate_cost_matrix
### ::: ultralytics.tracker.utils.matching.gate_cost_matrix
<br><br>
# fuse_motion
## fuse_motion
---
:::ultralytics.tracker.utils.matching.fuse_motion
### ::: ultralytics.tracker.utils.matching.fuse_motion
<br><br>
# fuse_iou
## fuse_iou
---
:::ultralytics.tracker.utils.matching.fuse_iou
### ::: ultralytics.tracker.utils.matching.fuse_iou
<br><br>
# fuse_score
## fuse_score
---
:::ultralytics.tracker.utils.matching.fuse_score
### ::: ultralytics.tracker.utils.matching.fuse_score
<br><br>
# bbox_ious
## bbox_ious
---
:::ultralytics.tracker.utils.matching.bbox_ious
### ::: ultralytics.tracker.utils.matching.bbox_ious
<br><br>

@ -3,47 +3,47 @@ description: Explore Ultralytics YOLO's configuration functions and tools. Handl
keywords: Ultralytics, YOLO, configuration, cfg2dict, get_cfg, handle_deprecation, check_cfg_mismatch, merge_equals_args, handle_yolo_hub, handle_yolo_settings, entrypoint, copy_default_cfg
---
# cfg2dict
## cfg2dict
---
:::ultralytics.yolo.cfg.cfg2dict
### ::: ultralytics.yolo.cfg.cfg2dict
<br><br>
# get_cfg
## get_cfg
---
:::ultralytics.yolo.cfg.get_cfg
### ::: ultralytics.yolo.cfg.get_cfg
<br><br>
# _handle_deprecation
## _handle_deprecation
---
:::ultralytics.yolo.cfg._handle_deprecation
### ::: ultralytics.yolo.cfg._handle_deprecation
<br><br>
# check_cfg_mismatch
## check_cfg_mismatch
---
:::ultralytics.yolo.cfg.check_cfg_mismatch
### ::: ultralytics.yolo.cfg.check_cfg_mismatch
<br><br>
# merge_equals_args
## merge_equals_args
---
:::ultralytics.yolo.cfg.merge_equals_args
### ::: ultralytics.yolo.cfg.merge_equals_args
<br><br>
# handle_yolo_hub
## handle_yolo_hub
---
:::ultralytics.yolo.cfg.handle_yolo_hub
### ::: ultralytics.yolo.cfg.handle_yolo_hub
<br><br>
# handle_yolo_settings
## handle_yolo_settings
---
:::ultralytics.yolo.cfg.handle_yolo_settings
### ::: ultralytics.yolo.cfg.handle_yolo_settings
<br><br>
# entrypoint
## entrypoint
---
:::ultralytics.yolo.cfg.entrypoint
### ::: ultralytics.yolo.cfg.entrypoint
<br><br>
# copy_default_cfg
## copy_default_cfg
---
:::ultralytics.yolo.cfg.copy_default_cfg
### ::: ultralytics.yolo.cfg.copy_default_cfg
<br><br>

@ -3,7 +3,7 @@ description: Learn how to use auto_annotate in Ultralytics YOLO to generate anno
keywords: Ultralytics YOLO, Auto Annotator, AI, image annotation, object detection, labelling, tool
---
# auto_annotate
## auto_annotate
---
:::ultralytics.yolo.data.annotator.auto_annotate
### ::: ultralytics.yolo.data.annotator.auto_annotate
<br><br>

@ -3,97 +3,97 @@ description: Use Ultralytics YOLO Data Augmentation transforms with Base, MixUp,
keywords: YOLO, data augmentation, transforms, BaseTransform, MixUp, RandomHSV, Albumentations, ToTensor, classify_transforms, classify_albumentations
---
# BaseTransform
## BaseTransform
---
:::ultralytics.yolo.data.augment.BaseTransform
### ::: ultralytics.yolo.data.augment.BaseTransform
<br><br>
# Compose
## Compose
---
:::ultralytics.yolo.data.augment.Compose
### ::: ultralytics.yolo.data.augment.Compose
<br><br>
# BaseMixTransform
## BaseMixTransform
---
:::ultralytics.yolo.data.augment.BaseMixTransform
### ::: ultralytics.yolo.data.augment.BaseMixTransform
<br><br>
# Mosaic
## Mosaic
---
:::ultralytics.yolo.data.augment.Mosaic
### ::: ultralytics.yolo.data.augment.Mosaic
<br><br>
# MixUp
## MixUp
---
:::ultralytics.yolo.data.augment.MixUp
### ::: ultralytics.yolo.data.augment.MixUp
<br><br>
# RandomPerspective
## RandomPerspective
---
:::ultralytics.yolo.data.augment.RandomPerspective
### ::: ultralytics.yolo.data.augment.RandomPerspective
<br><br>
# RandomHSV
## RandomHSV
---
:::ultralytics.yolo.data.augment.RandomHSV
### ::: ultralytics.yolo.data.augment.RandomHSV
<br><br>
# RandomFlip
## RandomFlip
---
:::ultralytics.yolo.data.augment.RandomFlip
### ::: ultralytics.yolo.data.augment.RandomFlip
<br><br>
# LetterBox
## LetterBox
---
:::ultralytics.yolo.data.augment.LetterBox
### ::: ultralytics.yolo.data.augment.LetterBox
<br><br>
# CopyPaste
## CopyPaste
---
:::ultralytics.yolo.data.augment.CopyPaste
### ::: ultralytics.yolo.data.augment.CopyPaste
<br><br>
# Albumentations
## Albumentations
---
:::ultralytics.yolo.data.augment.Albumentations
### ::: ultralytics.yolo.data.augment.Albumentations
<br><br>
# Format
## Format
---
:::ultralytics.yolo.data.augment.Format
### ::: ultralytics.yolo.data.augment.Format
<br><br>
# ClassifyLetterBox
## ClassifyLetterBox
---
:::ultralytics.yolo.data.augment.ClassifyLetterBox
### ::: ultralytics.yolo.data.augment.ClassifyLetterBox
<br><br>
# CenterCrop
## CenterCrop
---
:::ultralytics.yolo.data.augment.CenterCrop
### ::: ultralytics.yolo.data.augment.CenterCrop
<br><br>
# ToTensor
## ToTensor
---
:::ultralytics.yolo.data.augment.ToTensor
### ::: ultralytics.yolo.data.augment.ToTensor
<br><br>
# v8_transforms
## v8_transforms
---
:::ultralytics.yolo.data.augment.v8_transforms
### ::: ultralytics.yolo.data.augment.v8_transforms
<br><br>
# classify_transforms
## classify_transforms
---
:::ultralytics.yolo.data.augment.classify_transforms
### ::: ultralytics.yolo.data.augment.classify_transforms
<br><br>
# hsv2colorjitter
## hsv2colorjitter
---
:::ultralytics.yolo.data.augment.hsv2colorjitter
### ::: ultralytics.yolo.data.augment.hsv2colorjitter
<br><br>
# classify_albumentations
## classify_albumentations
---
:::ultralytics.yolo.data.augment.classify_albumentations
### ::: ultralytics.yolo.data.augment.classify_albumentations
<br><br>

@ -3,7 +3,7 @@ description: Learn about BaseDataset in Ultralytics YOLO, a flexible dataset cla
keywords: BaseDataset, Ultralytics YOLO, object detection, real-world applications, documentation
---
# BaseDataset
## BaseDataset
---
:::ultralytics.yolo.data.base.BaseDataset
### ::: ultralytics.yolo.data.base.BaseDataset
<br><br>

@ -3,37 +3,37 @@ description: Maximize YOLO performance with Ultralytics' InfiniteDataLoader, see
keywords: Ultralytics, YOLO, object detection, data loading, build dataloader, load inference source
---
# InfiniteDataLoader
## InfiniteDataLoader
---
:::ultralytics.yolo.data.build.InfiniteDataLoader
### ::: ultralytics.yolo.data.build.InfiniteDataLoader
<br><br>
# _RepeatSampler
## _RepeatSampler
---
:::ultralytics.yolo.data.build._RepeatSampler
### ::: ultralytics.yolo.data.build._RepeatSampler
<br><br>
# seed_worker
## seed_worker
---
:::ultralytics.yolo.data.build.seed_worker
### ::: ultralytics.yolo.data.build.seed_worker
<br><br>
# build_yolo_dataset
## build_yolo_dataset
---
:::ultralytics.yolo.data.build.build_yolo_dataset
### ::: ultralytics.yolo.data.build.build_yolo_dataset
<br><br>
# build_dataloader
## build_dataloader
---
:::ultralytics.yolo.data.build.build_dataloader
### ::: ultralytics.yolo.data.build.build_dataloader
<br><br>
# check_source
## check_source
---
:::ultralytics.yolo.data.build.check_source
### ::: ultralytics.yolo.data.build.check_source
<br><br>
# load_inference_source
## load_inference_source
---
:::ultralytics.yolo.data.build.load_inference_source
### ::: ultralytics.yolo.data.build.load_inference_source
<br><br>

@ -3,32 +3,32 @@ description: Convert COCO-91 to COCO-80 class, RLE to polygon, and merge multi-s
keywords: Ultralytics, YOLO, converter, COCO91, COCO80, rle2polygon, merge_multi_segment, annotations
---
# coco91_to_coco80_class
## coco91_to_coco80_class
---
:::ultralytics.yolo.data.converter.coco91_to_coco80_class
### ::: ultralytics.yolo.data.converter.coco91_to_coco80_class
<br><br>
# convert_coco
## convert_coco
---
:::ultralytics.yolo.data.converter.convert_coco
### ::: ultralytics.yolo.data.converter.convert_coco
<br><br>
# rle2polygon
## rle2polygon
---
:::ultralytics.yolo.data.converter.rle2polygon
### ::: ultralytics.yolo.data.converter.rle2polygon
<br><br>
# min_index
## min_index
---
:::ultralytics.yolo.data.converter.min_index
### ::: ultralytics.yolo.data.converter.min_index
<br><br>
# merge_multi_segment
## merge_multi_segment
---
:::ultralytics.yolo.data.converter.merge_multi_segment
### ::: ultralytics.yolo.data.converter.merge_multi_segment
<br><br>
# delete_dsstore
## delete_dsstore
---
:::ultralytics.yolo.data.converter.delete_dsstore
### ::: ultralytics.yolo.data.converter.delete_dsstore
<br><br>

@ -3,42 +3,42 @@ description: 'Ultralytics YOLO Docs: Learn about stream loaders for image and te
keywords: Ultralytics YOLO, data loaders, stream load images, screenshots, tensor data, autocast list, youtube URL retriever
---
# SourceTypes
## SourceTypes
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.SourceTypes
### ::: ultralytics.yolo.data.dataloaders.stream_loaders.SourceTypes
<br><br>
# LoadStreams
## LoadStreams
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadStreams
### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadStreams
<br><br>
# LoadScreenshots
## LoadScreenshots
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadScreenshots
### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadScreenshots
<br><br>
# LoadImages
## LoadImages
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadImages
### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadImages
<br><br>
# LoadPilAndNumpy
## LoadPilAndNumpy
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadPilAndNumpy
### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadPilAndNumpy
<br><br>
# LoadTensor
## LoadTensor
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadTensor
### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadTensor
<br><br>
# autocast_list
## autocast_list
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.autocast_list
### ::: ultralytics.yolo.data.dataloaders.stream_loaders.autocast_list
<br><br>
# get_best_youtube_url
## get_best_youtube_url
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.get_best_youtube_url
### ::: ultralytics.yolo.data.dataloaders.stream_loaders.get_best_youtube_url
<br><br>

@ -3,87 +3,87 @@ description: Enhance image data with Albumentations CenterCrop, normalize, augme
keywords: YOLO, object detection, data loaders, V5 augmentations, CenterCrop, normalize, random_perspective
---
# Albumentations
## Albumentations
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.Albumentations
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.Albumentations
<br><br>
# LetterBox
## LetterBox
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.LetterBox
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.LetterBox
<br><br>
# CenterCrop
## CenterCrop
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.CenterCrop
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.CenterCrop
<br><br>
# ToTensor
## ToTensor
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.ToTensor
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.ToTensor
<br><br>
# normalize
## normalize
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.normalize
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.normalize
<br><br>
# denormalize
## denormalize
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.denormalize
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.denormalize
<br><br>
# augment_hsv
## augment_hsv
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.augment_hsv
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.augment_hsv
<br><br>
# hist_equalize
## hist_equalize
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.hist_equalize
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.hist_equalize
<br><br>
# replicate
## replicate
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.replicate
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.replicate
<br><br>
# letterbox
## letterbox
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.letterbox
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.letterbox
<br><br>
# random_perspective
## random_perspective
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.random_perspective
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.random_perspective
<br><br>
# copy_paste
## copy_paste
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.copy_paste
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.copy_paste
<br><br>
# cutout
## cutout
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.cutout
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.cutout
<br><br>
# mixup
## mixup
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.mixup
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.mixup
<br><br>
# box_candidates
## box_candidates
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.box_candidates
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.box_candidates
<br><br>
# classify_albumentations
## classify_albumentations
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.classify_albumentations
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.classify_albumentations
<br><br>
# classify_transforms
## classify_transforms
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.classify_transforms
### ::: ultralytics.yolo.data.dataloaders.v5augmentations.classify_transforms
<br><br>

@ -3,92 +3,92 @@ description: Efficiently load images and labels to models using Ultralytics YOLO
keywords: YOLO, data loader, image classification, object detection, Ultralytics
---
# InfiniteDataLoader
## InfiniteDataLoader
---
:::ultralytics.yolo.data.dataloaders.v5loader.InfiniteDataLoader
### ::: ultralytics.yolo.data.dataloaders.v5loader.InfiniteDataLoader
<br><br>
# _RepeatSampler
## _RepeatSampler
---
:::ultralytics.yolo.data.dataloaders.v5loader._RepeatSampler
### ::: ultralytics.yolo.data.dataloaders.v5loader._RepeatSampler
<br><br>
# LoadScreenshots
## LoadScreenshots
---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadScreenshots
### ::: ultralytics.yolo.data.dataloaders.v5loader.LoadScreenshots
<br><br>
# LoadImages
## LoadImages
---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadImages
### ::: ultralytics.yolo.data.dataloaders.v5loader.LoadImages
<br><br>
# LoadStreams
## LoadStreams
---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadStreams
### ::: ultralytics.yolo.data.dataloaders.v5loader.LoadStreams
<br><br>
# LoadImagesAndLabels
## LoadImagesAndLabels
---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadImagesAndLabels
### ::: ultralytics.yolo.data.dataloaders.v5loader.LoadImagesAndLabels
<br><br>
# ClassificationDataset
## ClassificationDataset
---
:::ultralytics.yolo.data.dataloaders.v5loader.ClassificationDataset
### ::: ultralytics.yolo.data.dataloaders.v5loader.ClassificationDataset
<br><br>
# get_hash
## get_hash
---
:::ultralytics.yolo.data.dataloaders.v5loader.get_hash
### ::: ultralytics.yolo.data.dataloaders.v5loader.get_hash
<br><br>
# exif_size
## exif_size
---
:::ultralytics.yolo.data.dataloaders.v5loader.exif_size
### ::: ultralytics.yolo.data.dataloaders.v5loader.exif_size
<br><br>
# exif_transpose
## exif_transpose
---
:::ultralytics.yolo.data.dataloaders.v5loader.exif_transpose
### ::: ultralytics.yolo.data.dataloaders.v5loader.exif_transpose
<br><br>
# seed_worker
## seed_worker
---
:::ultralytics.yolo.data.dataloaders.v5loader.seed_worker
### ::: ultralytics.yolo.data.dataloaders.v5loader.seed_worker
<br><br>
# create_dataloader
## create_dataloader
---
:::ultralytics.yolo.data.dataloaders.v5loader.create_dataloader
### ::: ultralytics.yolo.data.dataloaders.v5loader.create_dataloader
<br><br>
# img2label_paths
## img2label_paths
---
:::ultralytics.yolo.data.dataloaders.v5loader.img2label_paths
### ::: ultralytics.yolo.data.dataloaders.v5loader.img2label_paths
<br><br>
# flatten_recursive
## flatten_recursive
---
:::ultralytics.yolo.data.dataloaders.v5loader.flatten_recursive
### ::: ultralytics.yolo.data.dataloaders.v5loader.flatten_recursive
<br><br>
# extract_boxes
## extract_boxes
---
:::ultralytics.yolo.data.dataloaders.v5loader.extract_boxes
### ::: ultralytics.yolo.data.dataloaders.v5loader.extract_boxes
<br><br>
# autosplit
## autosplit
---
:::ultralytics.yolo.data.dataloaders.v5loader.autosplit
### ::: ultralytics.yolo.data.dataloaders.v5loader.autosplit
<br><br>
# verify_image_label
## verify_image_label
---
:::ultralytics.yolo.data.dataloaders.v5loader.verify_image_label
### ::: ultralytics.yolo.data.dataloaders.v5loader.verify_image_label
<br><br>
# create_classification_dataloader
## create_classification_dataloader
---
:::ultralytics.yolo.data.dataloaders.v5loader.create_classification_dataloader
### ::: ultralytics.yolo.data.dataloaders.v5loader.create_classification_dataloader
<br><br>

@ -3,17 +3,17 @@ description: Create custom YOLOv5 datasets with Ultralytics YOLODataset and Sema
keywords: YOLODataset, SemanticDataset, Ultralytics YOLO Docs, Object Detection, Segmentation
---
# YOLODataset
## YOLODataset
---
:::ultralytics.yolo.data.dataset.YOLODataset
### ::: ultralytics.yolo.data.dataset.YOLODataset
<br><br>
# ClassificationDataset
## ClassificationDataset
---
:::ultralytics.yolo.data.dataset.ClassificationDataset
### ::: ultralytics.yolo.data.dataset.ClassificationDataset
<br><br>
# SemanticDataset
## SemanticDataset
---
:::ultralytics.yolo.data.dataset.SemanticDataset
### ::: ultralytics.yolo.data.dataset.SemanticDataset
<br><br>

@ -3,7 +3,7 @@ description: Create a custom dataset of mixed and oriented rectangular objects w
keywords: Ultralytics YOLO, MixAndRectDataset, dataset wrapper, image-level annotations, object-level annotations, rectangular object detection
---
# MixAndRectDataset
## MixAndRectDataset
---
:::ultralytics.yolo.data.dataset_wrappers.MixAndRectDataset
### ::: ultralytics.yolo.data.dataset_wrappers.MixAndRectDataset
<br><br>

@ -3,67 +3,67 @@ description: Efficiently handle data in YOLO with Ultralytics. Utilize HUBDatase
keywords: YOLOv4, Object Detection, Computer Vision, Deep Learning, Convolutional Neural Network, CNN, Ultralytics Docs
---
# HUBDatasetStats
## HUBDatasetStats
---
:::ultralytics.yolo.data.utils.HUBDatasetStats
### ::: ultralytics.yolo.data.utils.HUBDatasetStats
<br><br>
# img2label_paths
## img2label_paths
---
:::ultralytics.yolo.data.utils.img2label_paths
### ::: ultralytics.yolo.data.utils.img2label_paths
<br><br>
# get_hash
## get_hash
---
:::ultralytics.yolo.data.utils.get_hash
### ::: ultralytics.yolo.data.utils.get_hash
<br><br>
# exif_size
## exif_size
---
:::ultralytics.yolo.data.utils.exif_size
### ::: ultralytics.yolo.data.utils.exif_size
<br><br>
# verify_image_label
## verify_image_label
---
:::ultralytics.yolo.data.utils.verify_image_label
### ::: ultralytics.yolo.data.utils.verify_image_label
<br><br>
# polygon2mask
## polygon2mask
---
:::ultralytics.yolo.data.utils.polygon2mask
### ::: ultralytics.yolo.data.utils.polygon2mask
<br><br>
# polygons2masks
## polygons2masks
---
:::ultralytics.yolo.data.utils.polygons2masks
### ::: ultralytics.yolo.data.utils.polygons2masks
<br><br>
# polygons2masks_overlap
## polygons2masks_overlap
---
:::ultralytics.yolo.data.utils.polygons2masks_overlap
### ::: ultralytics.yolo.data.utils.polygons2masks_overlap
<br><br>
# check_det_dataset
## check_det_dataset
---
:::ultralytics.yolo.data.utils.check_det_dataset
### ::: ultralytics.yolo.data.utils.check_det_dataset
<br><br>
# check_cls_dataset
## check_cls_dataset
---
:::ultralytics.yolo.data.utils.check_cls_dataset
### ::: ultralytics.yolo.data.utils.check_cls_dataset
<br><br>
# compress_one_image
## compress_one_image
---
:::ultralytics.yolo.data.utils.compress_one_image
### ::: ultralytics.yolo.data.utils.compress_one_image
<br><br>
# delete_dsstore
## delete_dsstore
---
:::ultralytics.yolo.data.utils.delete_dsstore
### ::: ultralytics.yolo.data.utils.delete_dsstore
<br><br>
# zip_directory
## zip_directory
---
:::ultralytics.yolo.data.utils.zip_directory
### ::: ultralytics.yolo.data.utils.zip_directory
<br><br>

@ -3,32 +3,32 @@ description: Learn how to export your YOLO model in various formats using Ultral
keywords: Ultralytics, YOLO, exporter, iOS detect model, gd_outputs, export
---
# Exporter
## Exporter
---
:::ultralytics.yolo.engine.exporter.Exporter
### ::: ultralytics.yolo.engine.exporter.Exporter
<br><br>
# iOSDetectModel
## iOSDetectModel
---
:::ultralytics.yolo.engine.exporter.iOSDetectModel
### ::: ultralytics.yolo.engine.exporter.iOSDetectModel
<br><br>
# export_formats
## export_formats
---
:::ultralytics.yolo.engine.exporter.export_formats
### ::: ultralytics.yolo.engine.exporter.export_formats
<br><br>
# gd_outputs
## gd_outputs
---
:::ultralytics.yolo.engine.exporter.gd_outputs
### ::: ultralytics.yolo.engine.exporter.gd_outputs
<br><br>
# try_export
## try_export
---
:::ultralytics.yolo.engine.exporter.try_export
### ::: ultralytics.yolo.engine.exporter.try_export
<br><br>
# export
## export
---
:::ultralytics.yolo.engine.exporter.export
### ::: ultralytics.yolo.engine.exporter.export
<br><br>

@ -3,7 +3,7 @@ description: Discover the YOLO model of Ultralytics engine to simplify your obje
keywords: YOLO, object detection, model, architecture, usage, customization, Ultralytics Docs
---
# YOLO
## YOLO
---
:::ultralytics.yolo.engine.model.YOLO
### ::: ultralytics.yolo.engine.model.YOLO
<br><br>

@ -3,7 +3,7 @@ description: '"The BasePredictor class in Ultralytics YOLO Engine predicts objec
keywords: Ultralytics, YOLO, BasePredictor, Object Detection, Computer Vision, Fast Model, Insights
---
# BasePredictor
## BasePredictor
---
:::ultralytics.yolo.engine.predictor.BasePredictor
### ::: ultralytics.yolo.engine.predictor.BasePredictor
<br><br>

@ -3,32 +3,32 @@ description: Learn about BaseTensor & Boxes in Ultralytics YOLO Engine. Check ou
keywords: YOLO, Engine, Results, Masks, Probs, Ultralytics
---
# BaseTensor
## BaseTensor
---
:::ultralytics.yolo.engine.results.BaseTensor
### ::: ultralytics.yolo.engine.results.BaseTensor
<br><br>
# Results
## Results
---
:::ultralytics.yolo.engine.results.Results
### ::: ultralytics.yolo.engine.results.Results
<br><br>
# Boxes
## Boxes
---
:::ultralytics.yolo.engine.results.Boxes
### ::: ultralytics.yolo.engine.results.Boxes
<br><br>
# Masks
## Masks
---
:::ultralytics.yolo.engine.results.Masks
### ::: ultralytics.yolo.engine.results.Masks
<br><br>
# Keypoints
## Keypoints
---
:::ultralytics.yolo.engine.results.Keypoints
### ::: ultralytics.yolo.engine.results.Keypoints
<br><br>
# Probs
## Probs
---
:::ultralytics.yolo.engine.results.Probs
### ::: ultralytics.yolo.engine.results.Probs
<br><br>

@ -3,7 +3,7 @@ description: Train faster with mixed precision. Learn how to use BaseTrainer wit
keywords: Ultralytics YOLO, BaseTrainer, object detection models, training guide
---
# BaseTrainer
## BaseTrainer
---
:::ultralytics.yolo.engine.trainer.BaseTrainer
### ::: ultralytics.yolo.engine.trainer.BaseTrainer
<br><br>

@ -3,7 +3,7 @@ description: Ensure YOLOv5 models meet constraints and standards with the BaseVa
keywords: Ultralytics, YOLO, BaseValidator, models, validation, object detection
---
# BaseValidator
## BaseValidator
---
:::ultralytics.yolo.engine.validator.BaseValidator
### ::: ultralytics.yolo.engine.validator.BaseValidator
<br><br>

@ -3,7 +3,7 @@ description: Learn about the Neural Architecture Search (NAS) feature available
keywords: Ultralytics YOLO, object detection, NAS, Neural Architecture Search, model optimization, accuracy improvement
---
# NAS
## NAS
---
:::ultralytics.yolo.nas.model.NAS
### ::: ultralytics.yolo.nas.model.NAS
<br><br>

@ -3,7 +3,7 @@ description: Learn how to use NASPredictor in Ultralytics YOLO for deploying eff
keywords: Ultralytics YOLO, NASPredictor, neural architecture search, efficient CNN models, search algorithms
---
# NASPredictor
## NASPredictor
---
:::ultralytics.yolo.nas.predict.NASPredictor
### ::: ultralytics.yolo.nas.predict.NASPredictor
<br><br>

@ -3,7 +3,7 @@ description: Learn about NASValidator in the Ultralytics YOLO Docs. Properly val
keywords: NASValidator, YOLO, neural architecture search, validation, performance, Ultralytics
---
# NASValidator
## NASValidator
---
:::ultralytics.yolo.nas.val.NASValidator
### ::: ultralytics.yolo.nas.val.NASValidator
<br><br>

@ -3,167 +3,167 @@ description: Uncover utility functions in Ultralytics YOLO. Handle YAML, threadi
keywords: Ultralytics, YOLO, utils, SimpleClass, IterableSimpleNamespace, EmojiFilter, TryExcept, plt_settings, set_logging, emojis, yaml_save, yaml_load, yaml_print, is_colab, is_kaggle, is_jupyter, is_docker, is_online, is_pip_package, is_dir_writeable, is_pytest_running, is_github_actions_ci, is_git_dir, get_git_dir, get_git_origin_url, get_git_branch, get_default_args, get_user_config_dir, colorstr, threaded, set_sentry, get_settings, set_settings, deprecation_warn, clean_url, url2file
---
# SimpleClass
## SimpleClass
---
:::ultralytics.yolo.utils.SimpleClass
### ::: ultralytics.yolo.utils.SimpleClass
<br><br>
# IterableSimpleNamespace
## IterableSimpleNamespace
---
:::ultralytics.yolo.utils.IterableSimpleNamespace
### ::: ultralytics.yolo.utils.IterableSimpleNamespace
<br><br>
# EmojiFilter
## EmojiFilter
---
:::ultralytics.yolo.utils.EmojiFilter
### ::: ultralytics.yolo.utils.EmojiFilter
<br><br>
# TryExcept
## TryExcept
---
:::ultralytics.yolo.utils.TryExcept
### ::: ultralytics.yolo.utils.TryExcept
<br><br>
# plt_settings
## plt_settings
---
:::ultralytics.yolo.utils.plt_settings
### ::: ultralytics.yolo.utils.plt_settings
<br><br>
# set_logging
## set_logging
---
:::ultralytics.yolo.utils.set_logging
### ::: ultralytics.yolo.utils.set_logging
<br><br>
# emojis
## emojis
---
:::ultralytics.yolo.utils.emojis
### ::: ultralytics.yolo.utils.emojis
<br><br>
# yaml_save
## yaml_save
---
:::ultralytics.yolo.utils.yaml_save
### ::: ultralytics.yolo.utils.yaml_save
<br><br>
# yaml_load
## yaml_load
---
:::ultralytics.yolo.utils.yaml_load
### ::: ultralytics.yolo.utils.yaml_load
<br><br>
# yaml_print
## yaml_print
---
:::ultralytics.yolo.utils.yaml_print
### ::: ultralytics.yolo.utils.yaml_print
<br><br>
# is_colab
## is_colab
---
:::ultralytics.yolo.utils.is_colab
### ::: ultralytics.yolo.utils.is_colab
<br><br>
# is_kaggle
## is_kaggle
---
:::ultralytics.yolo.utils.is_kaggle
### ::: ultralytics.yolo.utils.is_kaggle
<br><br>
# is_jupyter
## is_jupyter
---
:::ultralytics.yolo.utils.is_jupyter
### ::: ultralytics.yolo.utils.is_jupyter
<br><br>
# is_docker
## is_docker
---
:::ultralytics.yolo.utils.is_docker
### ::: ultralytics.yolo.utils.is_docker
<br><br>
# is_online
## is_online
---
:::ultralytics.yolo.utils.is_online
### ::: ultralytics.yolo.utils.is_online
<br><br>
# is_pip_package
## is_pip_package
---
:::ultralytics.yolo.utils.is_pip_package
### ::: ultralytics.yolo.utils.is_pip_package
<br><br>
# is_dir_writeable
## is_dir_writeable
---
:::ultralytics.yolo.utils.is_dir_writeable
### ::: ultralytics.yolo.utils.is_dir_writeable
<br><br>
# is_pytest_running
## is_pytest_running
---
:::ultralytics.yolo.utils.is_pytest_running
### ::: ultralytics.yolo.utils.is_pytest_running
<br><br>
# is_github_actions_ci
## is_github_actions_ci
---
:::ultralytics.yolo.utils.is_github_actions_ci
### ::: ultralytics.yolo.utils.is_github_actions_ci
<br><br>
# is_git_dir
## is_git_dir
---
:::ultralytics.yolo.utils.is_git_dir
### ::: ultralytics.yolo.utils.is_git_dir
<br><br>
# get_git_dir
## get_git_dir
---
:::ultralytics.yolo.utils.get_git_dir
### ::: ultralytics.yolo.utils.get_git_dir
<br><br>
# get_git_origin_url
## get_git_origin_url
---
:::ultralytics.yolo.utils.get_git_origin_url
### ::: ultralytics.yolo.utils.get_git_origin_url
<br><br>
# get_git_branch
## get_git_branch
---
:::ultralytics.yolo.utils.get_git_branch
### ::: ultralytics.yolo.utils.get_git_branch
<br><br>
# get_default_args
## get_default_args
---
:::ultralytics.yolo.utils.get_default_args
### ::: ultralytics.yolo.utils.get_default_args
<br><br>
# get_user_config_dir
## get_user_config_dir
---
:::ultralytics.yolo.utils.get_user_config_dir
### ::: ultralytics.yolo.utils.get_user_config_dir
<br><br>
# colorstr
## colorstr
---
:::ultralytics.yolo.utils.colorstr
### ::: ultralytics.yolo.utils.colorstr
<br><br>
# threaded
## threaded
---
:::ultralytics.yolo.utils.threaded
### ::: ultralytics.yolo.utils.threaded
<br><br>
# set_sentry
## set_sentry
---
:::ultralytics.yolo.utils.set_sentry
### ::: ultralytics.yolo.utils.set_sentry
<br><br>
# get_settings
## get_settings
---
:::ultralytics.yolo.utils.get_settings
### ::: ultralytics.yolo.utils.get_settings
<br><br>
# set_settings
## set_settings
---
:::ultralytics.yolo.utils.set_settings
### ::: ultralytics.yolo.utils.set_settings
<br><br>
# deprecation_warn
## deprecation_warn
---
:::ultralytics.yolo.utils.deprecation_warn
### ::: ultralytics.yolo.utils.deprecation_warn
<br><br>
# clean_url
## clean_url
---
:::ultralytics.yolo.utils.clean_url
### ::: ultralytics.yolo.utils.clean_url
<br><br>
# url2file
## url2file
---
:::ultralytics.yolo.utils.url2file
### ::: ultralytics.yolo.utils.url2file
<br><br>

@ -3,12 +3,12 @@ description: Dynamically adjusts input size to optimize GPU memory usage during
keywords: YOLOv5, batch size, training, Ultralytics Autobatch, object detection, model performance
---
# check_train_batch_size
## check_train_batch_size
---
:::ultralytics.yolo.utils.autobatch.check_train_batch_size
### ::: ultralytics.yolo.utils.autobatch.check_train_batch_size
<br><br>
# autobatch
## autobatch
---
:::ultralytics.yolo.utils.autobatch.autobatch
### ::: ultralytics.yolo.utils.autobatch.autobatch
<br><br>

@ -3,12 +3,12 @@ description: Improve your YOLO's performance and measure its speed. Benchmark ut
keywords: Ultralytics YOLO, ProfileModels, benchmark, model inference, detection
---
# ProfileModels
## ProfileModels
---
:::ultralytics.yolo.utils.benchmarks.ProfileModels
### ::: ultralytics.yolo.utils.benchmarks.ProfileModels
<br><br>
# benchmark
## benchmark
---
:::ultralytics.yolo.utils.benchmarks.benchmark
### ::: ultralytics.yolo.utils.benchmarks.benchmark
<br><br>

@ -3,137 +3,137 @@ description: Learn about YOLO's callback functions from on_train_start to add_in
keywords: YOLO, Ultralytics, callbacks, object detection, training, inference
---
# on_pretrain_routine_start
## on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_start
### ::: ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_start
<br><br>
# on_pretrain_routine_end
## on_pretrain_routine_end
---
:::ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_end
### ::: ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_end
<br><br>
# on_train_start
## on_train_start
---
:::ultralytics.yolo.utils.callbacks.base.on_train_start
### ::: ultralytics.yolo.utils.callbacks.base.on_train_start
<br><br>
# on_train_epoch_start
## on_train_epoch_start
---
:::ultralytics.yolo.utils.callbacks.base.on_train_epoch_start
### ::: ultralytics.yolo.utils.callbacks.base.on_train_epoch_start
<br><br>
# on_train_batch_start
## on_train_batch_start
---
:::ultralytics.yolo.utils.callbacks.base.on_train_batch_start
### ::: ultralytics.yolo.utils.callbacks.base.on_train_batch_start
<br><br>
# optimizer_step
## optimizer_step
---
:::ultralytics.yolo.utils.callbacks.base.optimizer_step
### ::: ultralytics.yolo.utils.callbacks.base.optimizer_step
<br><br>
# on_before_zero_grad
## on_before_zero_grad
---
:::ultralytics.yolo.utils.callbacks.base.on_before_zero_grad
### ::: ultralytics.yolo.utils.callbacks.base.on_before_zero_grad
<br><br>
# on_train_batch_end
## on_train_batch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_train_batch_end
### ::: ultralytics.yolo.utils.callbacks.base.on_train_batch_end
<br><br>
# on_train_epoch_end
## on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_train_epoch_end
### ::: ultralytics.yolo.utils.callbacks.base.on_train_epoch_end
<br><br>
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.base.on_fit_epoch_end
<br><br>
# on_model_save
## on_model_save
---
:::ultralytics.yolo.utils.callbacks.base.on_model_save
### ::: ultralytics.yolo.utils.callbacks.base.on_model_save
<br><br>
# on_train_end
## on_train_end
---
:::ultralytics.yolo.utils.callbacks.base.on_train_end
### ::: ultralytics.yolo.utils.callbacks.base.on_train_end
<br><br>
# on_params_update
## on_params_update
---
:::ultralytics.yolo.utils.callbacks.base.on_params_update
### ::: ultralytics.yolo.utils.callbacks.base.on_params_update
<br><br>
# teardown
## teardown
---
:::ultralytics.yolo.utils.callbacks.base.teardown
### ::: ultralytics.yolo.utils.callbacks.base.teardown
<br><br>
# on_val_start
## on_val_start
---
:::ultralytics.yolo.utils.callbacks.base.on_val_start
### ::: ultralytics.yolo.utils.callbacks.base.on_val_start
<br><br>
# on_val_batch_start
## on_val_batch_start
---
:::ultralytics.yolo.utils.callbacks.base.on_val_batch_start
### ::: ultralytics.yolo.utils.callbacks.base.on_val_batch_start
<br><br>
# on_val_batch_end
## on_val_batch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_val_batch_end
### ::: ultralytics.yolo.utils.callbacks.base.on_val_batch_end
<br><br>
# on_val_end
## on_val_end
---
:::ultralytics.yolo.utils.callbacks.base.on_val_end
### ::: ultralytics.yolo.utils.callbacks.base.on_val_end
<br><br>
# on_predict_start
## on_predict_start
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_start
### ::: ultralytics.yolo.utils.callbacks.base.on_predict_start
<br><br>
# on_predict_batch_start
## on_predict_batch_start
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_batch_start
### ::: ultralytics.yolo.utils.callbacks.base.on_predict_batch_start
<br><br>
# on_predict_batch_end
## on_predict_batch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_batch_end
### ::: ultralytics.yolo.utils.callbacks.base.on_predict_batch_end
<br><br>
# on_predict_postprocess_end
## on_predict_postprocess_end
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_postprocess_end
### ::: ultralytics.yolo.utils.callbacks.base.on_predict_postprocess_end
<br><br>
# on_predict_end
## on_predict_end
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_end
### ::: ultralytics.yolo.utils.callbacks.base.on_predict_end
<br><br>
# on_export_start
## on_export_start
---
:::ultralytics.yolo.utils.callbacks.base.on_export_start
### ::: ultralytics.yolo.utils.callbacks.base.on_export_start
<br><br>
# on_export_end
## on_export_end
---
:::ultralytics.yolo.utils.callbacks.base.on_export_end
### ::: ultralytics.yolo.utils.callbacks.base.on_export_end
<br><br>
# get_default_callbacks
## get_default_callbacks
---
:::ultralytics.yolo.utils.callbacks.base.get_default_callbacks
### ::: ultralytics.yolo.utils.callbacks.base.get_default_callbacks
<br><br>
# add_integration_callbacks
## add_integration_callbacks
---
:::ultralytics.yolo.utils.callbacks.base.add_integration_callbacks
### ::: ultralytics.yolo.utils.callbacks.base.add_integration_callbacks
<br><br>

@ -3,37 +3,37 @@ description: Improve your YOLOv5 model training with callbacks from ClearML. Lea
keywords: Ultralytics YOLO, callbacks, log plots, epoch monitoring, training end events
---
# _log_debug_samples
## _log_debug_samples
---
:::ultralytics.yolo.utils.callbacks.clearml._log_debug_samples
### ::: ultralytics.yolo.utils.callbacks.clearml._log_debug_samples
<br><br>
# _log_plot
## _log_plot
---
:::ultralytics.yolo.utils.callbacks.clearml._log_plot
### ::: ultralytics.yolo.utils.callbacks.clearml._log_plot
<br><br>
# on_pretrain_routine_start
## on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.clearml.on_pretrain_routine_start
### ::: ultralytics.yolo.utils.callbacks.clearml.on_pretrain_routine_start
<br><br>
# on_train_epoch_end
## on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.clearml.on_train_epoch_end
### ::: ultralytics.yolo.utils.callbacks.clearml.on_train_epoch_end
<br><br>
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.clearml.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.clearml.on_fit_epoch_end
<br><br>
# on_val_end
## on_val_end
---
:::ultralytics.yolo.utils.callbacks.clearml.on_val_end
### ::: ultralytics.yolo.utils.callbacks.clearml.on_val_end
<br><br>
# on_train_end
## on_train_end
---
:::ultralytics.yolo.utils.callbacks.clearml.on_train_end
### ::: ultralytics.yolo.utils.callbacks.clearml.on_train_end
<br><br>

@ -3,122 +3,122 @@ description: Learn about YOLO callbacks using the Comet.ml platform, enhancing o
keywords: Ultralytics, YOLO, callbacks, Comet ML, log images, log predictions, log plots, fetch metadata, fetch annotations, create experiment data, format experiment data
---
# _get_comet_mode
## _get_comet_mode
---
:::ultralytics.yolo.utils.callbacks.comet._get_comet_mode
### ::: ultralytics.yolo.utils.callbacks.comet._get_comet_mode
<br><br>
# _get_comet_model_name
## _get_comet_model_name
---
:::ultralytics.yolo.utils.callbacks.comet._get_comet_model_name
### ::: ultralytics.yolo.utils.callbacks.comet._get_comet_model_name
<br><br>
# _get_eval_batch_logging_interval
## _get_eval_batch_logging_interval
---
:::ultralytics.yolo.utils.callbacks.comet._get_eval_batch_logging_interval
### ::: ultralytics.yolo.utils.callbacks.comet._get_eval_batch_logging_interval
<br><br>
# _get_max_image_predictions_to_log
## _get_max_image_predictions_to_log
---
:::ultralytics.yolo.utils.callbacks.comet._get_max_image_predictions_to_log
### ::: ultralytics.yolo.utils.callbacks.comet._get_max_image_predictions_to_log
<br><br>
# _scale_confidence_score
## _scale_confidence_score
---
:::ultralytics.yolo.utils.callbacks.comet._scale_confidence_score
### ::: ultralytics.yolo.utils.callbacks.comet._scale_confidence_score
<br><br>
# _should_log_confusion_matrix
## _should_log_confusion_matrix
---
:::ultralytics.yolo.utils.callbacks.comet._should_log_confusion_matrix
### ::: ultralytics.yolo.utils.callbacks.comet._should_log_confusion_matrix
<br><br>
# _should_log_image_predictions
## _should_log_image_predictions
---
:::ultralytics.yolo.utils.callbacks.comet._should_log_image_predictions
### ::: ultralytics.yolo.utils.callbacks.comet._should_log_image_predictions
<br><br>
# _get_experiment_type
## _get_experiment_type
---
:::ultralytics.yolo.utils.callbacks.comet._get_experiment_type
### ::: ultralytics.yolo.utils.callbacks.comet._get_experiment_type
<br><br>
# _create_experiment
## _create_experiment
---
:::ultralytics.yolo.utils.callbacks.comet._create_experiment
### ::: ultralytics.yolo.utils.callbacks.comet._create_experiment
<br><br>
# _fetch_trainer_metadata
## _fetch_trainer_metadata
---
:::ultralytics.yolo.utils.callbacks.comet._fetch_trainer_metadata
### ::: ultralytics.yolo.utils.callbacks.comet._fetch_trainer_metadata
<br><br>
# _scale_bounding_box_to_original_image_shape
## _scale_bounding_box_to_original_image_shape
---
:::ultralytics.yolo.utils.callbacks.comet._scale_bounding_box_to_original_image_shape
### ::: ultralytics.yolo.utils.callbacks.comet._scale_bounding_box_to_original_image_shape
<br><br>
# _format_ground_truth_annotations_for_detection
## _format_ground_truth_annotations_for_detection
---
:::ultralytics.yolo.utils.callbacks.comet._format_ground_truth_annotations_for_detection
### ::: ultralytics.yolo.utils.callbacks.comet._format_ground_truth_annotations_for_detection
<br><br>
# _format_prediction_annotations_for_detection
## _format_prediction_annotations_for_detection
---
:::ultralytics.yolo.utils.callbacks.comet._format_prediction_annotations_for_detection
### ::: ultralytics.yolo.utils.callbacks.comet._format_prediction_annotations_for_detection
<br><br>
# _fetch_annotations
## _fetch_annotations
---
:::ultralytics.yolo.utils.callbacks.comet._fetch_annotations
### ::: ultralytics.yolo.utils.callbacks.comet._fetch_annotations
<br><br>
# _create_prediction_metadata_map
## _create_prediction_metadata_map
---
:::ultralytics.yolo.utils.callbacks.comet._create_prediction_metadata_map
### ::: ultralytics.yolo.utils.callbacks.comet._create_prediction_metadata_map
<br><br>
# _log_confusion_matrix
## _log_confusion_matrix
---
:::ultralytics.yolo.utils.callbacks.comet._log_confusion_matrix
### ::: ultralytics.yolo.utils.callbacks.comet._log_confusion_matrix
<br><br>
# _log_images
## _log_images
---
:::ultralytics.yolo.utils.callbacks.comet._log_images
### ::: ultralytics.yolo.utils.callbacks.comet._log_images
<br><br>
# _log_image_predictions
## _log_image_predictions
---
:::ultralytics.yolo.utils.callbacks.comet._log_image_predictions
### ::: ultralytics.yolo.utils.callbacks.comet._log_image_predictions
<br><br>
# _log_plots
## _log_plots
---
:::ultralytics.yolo.utils.callbacks.comet._log_plots
### ::: ultralytics.yolo.utils.callbacks.comet._log_plots
<br><br>
# _log_model
## _log_model
---
:::ultralytics.yolo.utils.callbacks.comet._log_model
### ::: ultralytics.yolo.utils.callbacks.comet._log_model
<br><br>
# on_pretrain_routine_start
## on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.comet.on_pretrain_routine_start
### ::: ultralytics.yolo.utils.callbacks.comet.on_pretrain_routine_start
<br><br>
# on_train_epoch_end
## on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.comet.on_train_epoch_end
### ::: ultralytics.yolo.utils.callbacks.comet.on_train_epoch_end
<br><br>
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.comet.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.comet.on_fit_epoch_end
<br><br>
# on_train_end
## on_train_end
---
:::ultralytics.yolo.utils.callbacks.comet.on_train_end
### ::: ultralytics.yolo.utils.callbacks.comet.on_train_end
<br><br>

@ -3,52 +3,52 @@ description: Explore Ultralytics YOLO Utils DVC Callbacks such as logging images
keywords: Ultralytics, YOLO, Utils, DVC, Callbacks, images, plots, confusion matrices, training progress
---
# _logger_disabled
## _logger_disabled
---
:::ultralytics.yolo.utils.callbacks.dvc._logger_disabled
### ::: ultralytics.yolo.utils.callbacks.dvc._logger_disabled
<br><br>
# _log_images
## _log_images
---
:::ultralytics.yolo.utils.callbacks.dvc._log_images
### ::: ultralytics.yolo.utils.callbacks.dvc._log_images
<br><br>
# _log_plots
## _log_plots
---
:::ultralytics.yolo.utils.callbacks.dvc._log_plots
### ::: ultralytics.yolo.utils.callbacks.dvc._log_plots
<br><br>
# _log_confusion_matrix
## _log_confusion_matrix
---
:::ultralytics.yolo.utils.callbacks.dvc._log_confusion_matrix
### ::: ultralytics.yolo.utils.callbacks.dvc._log_confusion_matrix
<br><br>
# on_pretrain_routine_start
## on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_start
### ::: ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_start
<br><br>
# on_pretrain_routine_end
## on_pretrain_routine_end
---
:::ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_end
### ::: ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_end
<br><br>
# on_train_start
## on_train_start
---
:::ultralytics.yolo.utils.callbacks.dvc.on_train_start
### ::: ultralytics.yolo.utils.callbacks.dvc.on_train_start
<br><br>
# on_train_epoch_start
## on_train_epoch_start
---
:::ultralytics.yolo.utils.callbacks.dvc.on_train_epoch_start
### ::: ultralytics.yolo.utils.callbacks.dvc.on_train_epoch_start
<br><br>
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.dvc.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.dvc.on_fit_epoch_end
<br><br>
# on_train_end
## on_train_end
---
:::ultralytics.yolo.utils.callbacks.dvc.on_train_end
### ::: ultralytics.yolo.utils.callbacks.dvc.on_train_end
<br><br>

@ -3,42 +3,42 @@ description: Improve YOLOv5 model training with Ultralytics' on-train callbacks.
keywords: Ultralytics, YOLO, callbacks, on_pretrain_routine_end, on_fit_epoch_end, on_train_start, on_val_start, on_predict_start, on_export_start
---
# on_pretrain_routine_end
## on_pretrain_routine_end
---
:::ultralytics.yolo.utils.callbacks.hub.on_pretrain_routine_end
### ::: ultralytics.yolo.utils.callbacks.hub.on_pretrain_routine_end
<br><br>
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.hub.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.hub.on_fit_epoch_end
<br><br>
# on_model_save
## on_model_save
---
:::ultralytics.yolo.utils.callbacks.hub.on_model_save
### ::: ultralytics.yolo.utils.callbacks.hub.on_model_save
<br><br>
# on_train_end
## on_train_end
---
:::ultralytics.yolo.utils.callbacks.hub.on_train_end
### ::: ultralytics.yolo.utils.callbacks.hub.on_train_end
<br><br>
# on_train_start
## on_train_start
---
:::ultralytics.yolo.utils.callbacks.hub.on_train_start
### ::: ultralytics.yolo.utils.callbacks.hub.on_train_start
<br><br>
# on_val_start
## on_val_start
---
:::ultralytics.yolo.utils.callbacks.hub.on_val_start
### ::: ultralytics.yolo.utils.callbacks.hub.on_val_start
<br><br>
# on_predict_start
## on_predict_start
---
:::ultralytics.yolo.utils.callbacks.hub.on_predict_start
### ::: ultralytics.yolo.utils.callbacks.hub.on_predict_start
<br><br>
# on_export_start
## on_export_start
---
:::ultralytics.yolo.utils.callbacks.hub.on_export_start
### ::: ultralytics.yolo.utils.callbacks.hub.on_export_start
<br><br>

@ -3,17 +3,17 @@ description: Track model performance and metrics with MLflow in YOLOv5. Use call
keywords: Ultralytics, YOLO, Utils, MLflow, callbacks, on_pretrain_routine_end, on_train_end, Tracking, Model Management, training
---
# on_pretrain_routine_end
## on_pretrain_routine_end
---
:::ultralytics.yolo.utils.callbacks.mlflow.on_pretrain_routine_end
### ::: ultralytics.yolo.utils.callbacks.mlflow.on_pretrain_routine_end
<br><br>
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.mlflow.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.mlflow.on_fit_epoch_end
<br><br>
# on_train_end
## on_train_end
---
:::ultralytics.yolo.utils.callbacks.mlflow.on_train_end
### ::: ultralytics.yolo.utils.callbacks.mlflow.on_train_end
<br><br>

@ -3,42 +3,42 @@ description: Improve YOLOv5 training with Neptune, a powerful logging tool. Trac
keywords: Ultralytics, YOLO, Neptune, Callbacks, log scalars, log images, log plots, training, validation
---
# _log_scalars
## _log_scalars
---
:::ultralytics.yolo.utils.callbacks.neptune._log_scalars
### ::: ultralytics.yolo.utils.callbacks.neptune._log_scalars
<br><br>
# _log_images
## _log_images
---
:::ultralytics.yolo.utils.callbacks.neptune._log_images
### ::: ultralytics.yolo.utils.callbacks.neptune._log_images
<br><br>
# _log_plot
## _log_plot
---
:::ultralytics.yolo.utils.callbacks.neptune._log_plot
### ::: ultralytics.yolo.utils.callbacks.neptune._log_plot
<br><br>
# on_pretrain_routine_start
## on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.neptune.on_pretrain_routine_start
### ::: ultralytics.yolo.utils.callbacks.neptune.on_pretrain_routine_start
<br><br>
# on_train_epoch_end
## on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.neptune.on_train_epoch_end
### ::: ultralytics.yolo.utils.callbacks.neptune.on_train_epoch_end
<br><br>
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.neptune.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.neptune.on_fit_epoch_end
<br><br>
# on_val_end
## on_val_end
---
:::ultralytics.yolo.utils.callbacks.neptune.on_val_end
### ::: ultralytics.yolo.utils.callbacks.neptune.on_val_end
<br><br>
# on_train_end
## on_train_end
---
:::ultralytics.yolo.utils.callbacks.neptune.on_train_end
### ::: ultralytics.yolo.utils.callbacks.neptune.on_train_end
<br><br>

@ -3,7 +3,7 @@ description: '"Improve YOLO model performance with on_fit_epoch_end callback. Le
keywords: on_fit_epoch_end, Ultralytics YOLO, callback function, training, model tuning
---
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.raytune.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.raytune.on_fit_epoch_end
<br><br>

@ -3,22 +3,22 @@ description: Learn how to monitor the training process with Tensorboard using Ul
keywords: TensorBoard callbacks, YOLO training, ultralytics YOLO
---
# _log_scalars
## _log_scalars
---
:::ultralytics.yolo.utils.callbacks.tensorboard._log_scalars
### ::: ultralytics.yolo.utils.callbacks.tensorboard._log_scalars
<br><br>
# on_pretrain_routine_start
## on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_pretrain_routine_start
### ::: ultralytics.yolo.utils.callbacks.tensorboard.on_pretrain_routine_start
<br><br>
# on_batch_end
## on_batch_end
---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_batch_end
### ::: ultralytics.yolo.utils.callbacks.tensorboard.on_batch_end
<br><br>
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.tensorboard.on_fit_epoch_end
<br><br>

@ -3,27 +3,27 @@ description: Learn how to use Ultralytics YOLO's built-in callbacks `on_pretrain
keywords: Ultralytics, YOLO, callbacks, weights, biases, training
---
# _log_plots
## _log_plots
---
:::ultralytics.yolo.utils.callbacks.wb._log_plots
### ::: ultralytics.yolo.utils.callbacks.wb._log_plots
<br><br>
# on_pretrain_routine_start
## on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.wb.on_pretrain_routine_start
### ::: ultralytics.yolo.utils.callbacks.wb.on_pretrain_routine_start
<br><br>
# on_fit_epoch_end
## on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.wb.on_fit_epoch_end
### ::: ultralytics.yolo.utils.callbacks.wb.on_fit_epoch_end
<br><br>
# on_train_epoch_end
## on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.wb.on_train_epoch_end
### ::: ultralytics.yolo.utils.callbacks.wb.on_train_epoch_end
<br><br>
# on_train_end
## on_train_end
---
:::ultralytics.yolo.utils.callbacks.wb.on_train_end
### ::: ultralytics.yolo.utils.callbacks.wb.on_train_end
<br><br>

@ -3,87 +3,87 @@ description: 'Check functions for YOLO utils: image size, version, font, require
keywords: YOLO, Ultralytics, Utils, Checks, image sizing, version updates, font compatibility, Python requirements, file suffixes, YAML syntax, image showing, AMP
---
# is_ascii
## is_ascii
---
:::ultralytics.yolo.utils.checks.is_ascii
### ::: ultralytics.yolo.utils.checks.is_ascii
<br><br>
# check_imgsz
## check_imgsz
---
:::ultralytics.yolo.utils.checks.check_imgsz
### ::: ultralytics.yolo.utils.checks.check_imgsz
<br><br>
# check_version
## check_version
---
:::ultralytics.yolo.utils.checks.check_version
### ::: ultralytics.yolo.utils.checks.check_version
<br><br>
# check_latest_pypi_version
## check_latest_pypi_version
---
:::ultralytics.yolo.utils.checks.check_latest_pypi_version
### ::: ultralytics.yolo.utils.checks.check_latest_pypi_version
<br><br>
# check_pip_update_available
## check_pip_update_available
---
:::ultralytics.yolo.utils.checks.check_pip_update_available
### ::: ultralytics.yolo.utils.checks.check_pip_update_available
<br><br>
# check_font
## check_font
---
:::ultralytics.yolo.utils.checks.check_font
### ::: ultralytics.yolo.utils.checks.check_font
<br><br>
# check_python
## check_python
---
:::ultralytics.yolo.utils.checks.check_python
### ::: ultralytics.yolo.utils.checks.check_python
<br><br>
# check_requirements
## check_requirements
---
:::ultralytics.yolo.utils.checks.check_requirements
### ::: ultralytics.yolo.utils.checks.check_requirements
<br><br>
# check_suffix
## check_suffix
---
:::ultralytics.yolo.utils.checks.check_suffix
### ::: ultralytics.yolo.utils.checks.check_suffix
<br><br>
# check_yolov5u_filename
## check_yolov5u_filename
---
:::ultralytics.yolo.utils.checks.check_yolov5u_filename
### ::: ultralytics.yolo.utils.checks.check_yolov5u_filename
<br><br>
# check_file
## check_file
---
:::ultralytics.yolo.utils.checks.check_file
### ::: ultralytics.yolo.utils.checks.check_file
<br><br>
# check_yaml
## check_yaml
---
:::ultralytics.yolo.utils.checks.check_yaml
### ::: ultralytics.yolo.utils.checks.check_yaml
<br><br>
# check_imshow
## check_imshow
---
:::ultralytics.yolo.utils.checks.check_imshow
### ::: ultralytics.yolo.utils.checks.check_imshow
<br><br>
# check_yolo
## check_yolo
---
:::ultralytics.yolo.utils.checks.check_yolo
### ::: ultralytics.yolo.utils.checks.check_yolo
<br><br>
# check_amp
## check_amp
---
:::ultralytics.yolo.utils.checks.check_amp
### ::: ultralytics.yolo.utils.checks.check_amp
<br><br>
# git_describe
## git_describe
---
:::ultralytics.yolo.utils.checks.git_describe
### ::: ultralytics.yolo.utils.checks.git_describe
<br><br>
# print_args
## print_args
---
:::ultralytics.yolo.utils.checks.print_args
### ::: ultralytics.yolo.utils.checks.print_args
<br><br>

@ -3,22 +3,22 @@ description: Learn how to find free network port and generate DDP (Distributed D
keywords: ultralytics, YOLO, utils, dist, distributed deep learning, DDP file, DDP cleanup
---
# find_free_network_port
## find_free_network_port
---
:::ultralytics.yolo.utils.dist.find_free_network_port
### ::: ultralytics.yolo.utils.dist.find_free_network_port
<br><br>
# generate_ddp_file
## generate_ddp_file
---
:::ultralytics.yolo.utils.dist.generate_ddp_file
### ::: ultralytics.yolo.utils.dist.generate_ddp_file
<br><br>
# generate_ddp_command
## generate_ddp_command
---
:::ultralytics.yolo.utils.dist.generate_ddp_command
### ::: ultralytics.yolo.utils.dist.generate_ddp_command
<br><br>
# ddp_cleanup
## ddp_cleanup
---
:::ultralytics.yolo.utils.dist.ddp_cleanup
### ::: ultralytics.yolo.utils.dist.ddp_cleanup
<br><br>

@ -3,32 +3,32 @@ description: Download and unzip YOLO pretrained models. Ultralytics YOLO docs ut
keywords: Ultralytics YOLO, downloads, trained models, datasets, weights, deep learning, computer vision
---
# is_url
## is_url
---
:::ultralytics.yolo.utils.downloads.is_url
### ::: ultralytics.yolo.utils.downloads.is_url
<br><br>
# unzip_file
## unzip_file
---
:::ultralytics.yolo.utils.downloads.unzip_file
### ::: ultralytics.yolo.utils.downloads.unzip_file
<br><br>
# check_disk_space
## check_disk_space
---
:::ultralytics.yolo.utils.downloads.check_disk_space
### ::: ultralytics.yolo.utils.downloads.check_disk_space
<br><br>
# safe_download
## safe_download
---
:::ultralytics.yolo.utils.downloads.safe_download
### ::: ultralytics.yolo.utils.downloads.safe_download
<br><br>
# attempt_download_asset
## attempt_download_asset
---
:::ultralytics.yolo.utils.downloads.attempt_download_asset
### ::: ultralytics.yolo.utils.downloads.attempt_download_asset
<br><br>
# download
## download
---
:::ultralytics.yolo.utils.downloads.download
### ::: ultralytics.yolo.utils.downloads.download
<br><br>

@ -3,7 +3,7 @@ description: Learn about HUBModelError in Ultralytics YOLO Docs. Resolve the err
keywords: HUBModelError, Ultralytics YOLO, YOLO Documentation, Object detection errors, YOLO Errors, HUBModelError Solutions
---
# HUBModelError
## HUBModelError
---
:::ultralytics.yolo.utils.errors.HUBModelError
### ::: ultralytics.yolo.utils.errors.HUBModelError
<br><br>

@ -3,37 +3,37 @@ description: 'Learn about Ultralytics YOLO files and directory utilities: Workin
keywords: YOLO, object detection, file utils, file age, file size, working directory, make directories, Ultralytics Docs
---
# WorkingDirectory
## WorkingDirectory
---
:::ultralytics.yolo.utils.files.WorkingDirectory
### ::: ultralytics.yolo.utils.files.WorkingDirectory
<br><br>
# increment_path
## increment_path
---
:::ultralytics.yolo.utils.files.increment_path
### ::: ultralytics.yolo.utils.files.increment_path
<br><br>
# file_age
## file_age
---
:::ultralytics.yolo.utils.files.file_age
### ::: ultralytics.yolo.utils.files.file_age
<br><br>
# file_date
## file_date
---
:::ultralytics.yolo.utils.files.file_date
### ::: ultralytics.yolo.utils.files.file_date
<br><br>
# file_size
## file_size
---
:::ultralytics.yolo.utils.files.file_size
### ::: ultralytics.yolo.utils.files.file_size
<br><br>
# get_latest_run
## get_latest_run
---
:::ultralytics.yolo.utils.files.get_latest_run
### ::: ultralytics.yolo.utils.files.get_latest_run
<br><br>
# make_dirs
## make_dirs
---
:::ultralytics.yolo.utils.files.make_dirs
### ::: ultralytics.yolo.utils.files.make_dirs
<br><br>

@ -3,17 +3,17 @@ description: Learn about Bounding Boxes (Bboxes) and _ntuple in Ultralytics YOLO
keywords: Ultralytics, YOLO, Bboxes, _ntuple, object detection, instance segmentation
---
# Bboxes
## Bboxes
---
:::ultralytics.yolo.utils.instance.Bboxes
### ::: ultralytics.yolo.utils.instance.Bboxes
<br><br>
# Instances
## Instances
---
:::ultralytics.yolo.utils.instance.Instances
### ::: ultralytics.yolo.utils.instance.Instances
<br><br>
# _ntuple
## _ntuple
---
:::ultralytics.yolo.utils.instance._ntuple
### ::: ultralytics.yolo.utils.instance._ntuple
<br><br>

@ -3,42 +3,42 @@ description: Learn about Varifocal Loss and Keypoint Loss in Ultralytics YOLO fo
keywords: Ultralytics, YOLO, loss functions, object detection, keypoint detection, segmentation, classification
---
# VarifocalLoss
## VarifocalLoss
---
:::ultralytics.yolo.utils.loss.VarifocalLoss
### ::: ultralytics.yolo.utils.loss.VarifocalLoss
<br><br>
# FocalLoss
## FocalLoss
---
:::ultralytics.yolo.utils.loss.FocalLoss
### ::: ultralytics.yolo.utils.loss.FocalLoss
<br><br>
# BboxLoss
## BboxLoss
---
:::ultralytics.yolo.utils.loss.BboxLoss
### ::: ultralytics.yolo.utils.loss.BboxLoss
<br><br>
# KeypointLoss
## KeypointLoss
---
:::ultralytics.yolo.utils.loss.KeypointLoss
### ::: ultralytics.yolo.utils.loss.KeypointLoss
<br><br>
# v8DetectionLoss
## v8DetectionLoss
---
:::ultralytics.yolo.utils.loss.v8DetectionLoss
### ::: ultralytics.yolo.utils.loss.v8DetectionLoss
<br><br>
# v8SegmentationLoss
## v8SegmentationLoss
---
:::ultralytics.yolo.utils.loss.v8SegmentationLoss
### ::: ultralytics.yolo.utils.loss.v8SegmentationLoss
<br><br>
# v8PoseLoss
## v8PoseLoss
---
:::ultralytics.yolo.utils.loss.v8PoseLoss
### ::: ultralytics.yolo.utils.loss.v8PoseLoss
<br><br>
# v8ClassificationLoss
## v8ClassificationLoss
---
:::ultralytics.yolo.utils.loss.v8ClassificationLoss
### ::: ultralytics.yolo.utils.loss.v8ClassificationLoss
<br><br>

@ -3,92 +3,92 @@ description: Explore Ultralytics YOLO's FocalLoss, DetMetrics, PoseMetrics, Clas
keywords: YOLOv5, metrics, losses, confusion matrix, detection metrics, pose metrics, classification metrics, intersection over area, intersection over union, keypoint intersection over union, average precision, per class average precision, Ultralytics Docs
---
# ConfusionMatrix
## ConfusionMatrix
---
:::ultralytics.yolo.utils.metrics.ConfusionMatrix
### ::: ultralytics.yolo.utils.metrics.ConfusionMatrix
<br><br>
# Metric
## Metric
---
:::ultralytics.yolo.utils.metrics.Metric
### ::: ultralytics.yolo.utils.metrics.Metric
<br><br>
# DetMetrics
## DetMetrics
---
:::ultralytics.yolo.utils.metrics.DetMetrics
### ::: ultralytics.yolo.utils.metrics.DetMetrics
<br><br>
# SegmentMetrics
## SegmentMetrics
---
:::ultralytics.yolo.utils.metrics.SegmentMetrics
### ::: ultralytics.yolo.utils.metrics.SegmentMetrics
<br><br>
# PoseMetrics
## PoseMetrics
---
:::ultralytics.yolo.utils.metrics.PoseMetrics
### ::: ultralytics.yolo.utils.metrics.PoseMetrics
<br><br>
# ClassifyMetrics
## ClassifyMetrics
---
:::ultralytics.yolo.utils.metrics.ClassifyMetrics
### ::: ultralytics.yolo.utils.metrics.ClassifyMetrics
<br><br>
# box_area
## box_area
---
:::ultralytics.yolo.utils.metrics.box_area
### ::: ultralytics.yolo.utils.metrics.box_area
<br><br>
# bbox_ioa
## bbox_ioa
---
:::ultralytics.yolo.utils.metrics.bbox_ioa
### ::: ultralytics.yolo.utils.metrics.bbox_ioa
<br><br>
# box_iou
## box_iou
---
:::ultralytics.yolo.utils.metrics.box_iou
### ::: ultralytics.yolo.utils.metrics.box_iou
<br><br>
# bbox_iou
## bbox_iou
---
:::ultralytics.yolo.utils.metrics.bbox_iou
### ::: ultralytics.yolo.utils.metrics.bbox_iou
<br><br>
# mask_iou
## mask_iou
---
:::ultralytics.yolo.utils.metrics.mask_iou
### ::: ultralytics.yolo.utils.metrics.mask_iou
<br><br>
# kpt_iou
## kpt_iou
---
:::ultralytics.yolo.utils.metrics.kpt_iou
### ::: ultralytics.yolo.utils.metrics.kpt_iou
<br><br>
# smooth_BCE
## smooth_BCE
---
:::ultralytics.yolo.utils.metrics.smooth_BCE
### ::: ultralytics.yolo.utils.metrics.smooth_BCE
<br><br>
# smooth
## smooth
---
:::ultralytics.yolo.utils.metrics.smooth
### ::: ultralytics.yolo.utils.metrics.smooth
<br><br>
# plot_pr_curve
## plot_pr_curve
---
:::ultralytics.yolo.utils.metrics.plot_pr_curve
### ::: ultralytics.yolo.utils.metrics.plot_pr_curve
<br><br>
# plot_mc_curve
## plot_mc_curve
---
:::ultralytics.yolo.utils.metrics.plot_mc_curve
### ::: ultralytics.yolo.utils.metrics.plot_mc_curve
<br><br>
# compute_ap
## compute_ap
---
:::ultralytics.yolo.utils.metrics.compute_ap
### ::: ultralytics.yolo.utils.metrics.compute_ap
<br><br>
# ap_per_class
## ap_per_class
---
:::ultralytics.yolo.utils.metrics.ap_per_class
### ::: ultralytics.yolo.utils.metrics.ap_per_class
<br><br>

@ -3,137 +3,137 @@ description: Learn about various utility functions in Ultralytics YOLO, includin
keywords: Ultralytics, YOLO, Utils Ops, Functions, coco80_to_coco91_class, scale_boxes, non_max_suppression, clip_coords, xyxy2xywh, xywhn2xyxy, xyn2xy, xyxy2ltwh, ltwh2xyxy, resample_segments, process_mask_upsample, process_mask_native, masks2segments, clean_str
---
# Profile
## Profile
---
:::ultralytics.yolo.utils.ops.Profile
### ::: ultralytics.yolo.utils.ops.Profile
<br><br>
# coco80_to_coco91_class
## coco80_to_coco91_class
---
:::ultralytics.yolo.utils.ops.coco80_to_coco91_class
### ::: ultralytics.yolo.utils.ops.coco80_to_coco91_class
<br><br>
# segment2box
## segment2box
---
:::ultralytics.yolo.utils.ops.segment2box
### ::: ultralytics.yolo.utils.ops.segment2box
<br><br>
# scale_boxes
## scale_boxes
---
:::ultralytics.yolo.utils.ops.scale_boxes
### ::: ultralytics.yolo.utils.ops.scale_boxes
<br><br>
# make_divisible
## make_divisible
---
:::ultralytics.yolo.utils.ops.make_divisible
### ::: ultralytics.yolo.utils.ops.make_divisible
<br><br>
# non_max_suppression
## non_max_suppression
---
:::ultralytics.yolo.utils.ops.non_max_suppression
### ::: ultralytics.yolo.utils.ops.non_max_suppression
<br><br>
# clip_boxes
## clip_boxes
---
:::ultralytics.yolo.utils.ops.clip_boxes
### ::: ultralytics.yolo.utils.ops.clip_boxes
<br><br>
# clip_coords
## clip_coords
---
:::ultralytics.yolo.utils.ops.clip_coords
### ::: ultralytics.yolo.utils.ops.clip_coords
<br><br>
# scale_image
## scale_image
---
:::ultralytics.yolo.utils.ops.scale_image
### ::: ultralytics.yolo.utils.ops.scale_image
<br><br>
# xyxy2xywh
## xyxy2xywh
---
:::ultralytics.yolo.utils.ops.xyxy2xywh
### ::: ultralytics.yolo.utils.ops.xyxy2xywh
<br><br>
# xywh2xyxy
## xywh2xyxy
---
:::ultralytics.yolo.utils.ops.xywh2xyxy
### ::: ultralytics.yolo.utils.ops.xywh2xyxy
<br><br>
# xywhn2xyxy
## xywhn2xyxy
---
:::ultralytics.yolo.utils.ops.xywhn2xyxy
### ::: ultralytics.yolo.utils.ops.xywhn2xyxy
<br><br>
# xyxy2xywhn
## xyxy2xywhn
---
:::ultralytics.yolo.utils.ops.xyxy2xywhn
### ::: ultralytics.yolo.utils.ops.xyxy2xywhn
<br><br>
# xyn2xy
## xyn2xy
---
:::ultralytics.yolo.utils.ops.xyn2xy
### ::: ultralytics.yolo.utils.ops.xyn2xy
<br><br>
# xywh2ltwh
## xywh2ltwh
---
:::ultralytics.yolo.utils.ops.xywh2ltwh
### ::: ultralytics.yolo.utils.ops.xywh2ltwh
<br><br>
# xyxy2ltwh
## xyxy2ltwh
---
:::ultralytics.yolo.utils.ops.xyxy2ltwh
### ::: ultralytics.yolo.utils.ops.xyxy2ltwh
<br><br>
# ltwh2xywh
## ltwh2xywh
---
:::ultralytics.yolo.utils.ops.ltwh2xywh
### ::: ultralytics.yolo.utils.ops.ltwh2xywh
<br><br>
# ltwh2xyxy
## ltwh2xyxy
---
:::ultralytics.yolo.utils.ops.ltwh2xyxy
### ::: ultralytics.yolo.utils.ops.ltwh2xyxy
<br><br>
# segments2boxes
## segments2boxes
---
:::ultralytics.yolo.utils.ops.segments2boxes
### ::: ultralytics.yolo.utils.ops.segments2boxes
<br><br>
# resample_segments
## resample_segments
---
:::ultralytics.yolo.utils.ops.resample_segments
### ::: ultralytics.yolo.utils.ops.resample_segments
<br><br>
# crop_mask
## crop_mask
---
:::ultralytics.yolo.utils.ops.crop_mask
### ::: ultralytics.yolo.utils.ops.crop_mask
<br><br>
# process_mask_upsample
## process_mask_upsample
---
:::ultralytics.yolo.utils.ops.process_mask_upsample
### ::: ultralytics.yolo.utils.ops.process_mask_upsample
<br><br>
# process_mask
## process_mask
---
:::ultralytics.yolo.utils.ops.process_mask
### ::: ultralytics.yolo.utils.ops.process_mask
<br><br>
# process_mask_native
## process_mask_native
---
:::ultralytics.yolo.utils.ops.process_mask_native
### ::: ultralytics.yolo.utils.ops.process_mask_native
<br><br>
# scale_coords
## scale_coords
---
:::ultralytics.yolo.utils.ops.scale_coords
### ::: ultralytics.yolo.utils.ops.scale_coords
<br><br>
# masks2segments
## masks2segments
---
:::ultralytics.yolo.utils.ops.masks2segments
### ::: ultralytics.yolo.utils.ops.masks2segments
<br><br>
# clean_str
## clean_str
---
:::ultralytics.yolo.utils.ops.clean_str
### ::: ultralytics.yolo.utils.ops.clean_str
<br><br>

@ -3,22 +3,22 @@ description: Learn how to use the Ultralytics YOLO Utils package's imread and im
keywords: imread, imshow, ultralytics, YOLO, image files, torchsave
---
# imread
## imread
---
:::ultralytics.yolo.utils.patches.imread
### ::: ultralytics.yolo.utils.patches.imread
<br><br>
# imwrite
## imwrite
---
:::ultralytics.yolo.utils.patches.imwrite
### ::: ultralytics.yolo.utils.patches.imwrite
<br><br>
# imshow
## imshow
---
:::ultralytics.yolo.utils.patches.imshow
### ::: ultralytics.yolo.utils.patches.imshow
<br><br>
# torch_save
## torch_save
---
:::ultralytics.yolo.utils.patches.torch_save
### ::: ultralytics.yolo.utils.patches.torch_save
<br><br>

@ -3,42 +3,42 @@ description: 'Discover the power of YOLO''s plotting functions: Colors, Labels a
keywords: YOLO, object detection, plotting, visualization, annotator, save one box, plot results, feature visualization, Ultralytics
---
# Colors
## Colors
---
:::ultralytics.yolo.utils.plotting.Colors
### ::: ultralytics.yolo.utils.plotting.Colors
<br><br>
# Annotator
## Annotator
---
:::ultralytics.yolo.utils.plotting.Annotator
### ::: ultralytics.yolo.utils.plotting.Annotator
<br><br>
# plot_labels
## plot_labels
---
:::ultralytics.yolo.utils.plotting.plot_labels
### ::: ultralytics.yolo.utils.plotting.plot_labels
<br><br>
# save_one_box
## save_one_box
---
:::ultralytics.yolo.utils.plotting.save_one_box
### ::: ultralytics.yolo.utils.plotting.save_one_box
<br><br>
# plot_images
## plot_images
---
:::ultralytics.yolo.utils.plotting.plot_images
### ::: ultralytics.yolo.utils.plotting.plot_images
<br><br>
# plot_results
## plot_results
---
:::ultralytics.yolo.utils.plotting.plot_results
### ::: ultralytics.yolo.utils.plotting.plot_results
<br><br>
# output_to_target
## output_to_target
---
:::ultralytics.yolo.utils.plotting.output_to_target
### ::: ultralytics.yolo.utils.plotting.output_to_target
<br><br>
# feature_visualization
## feature_visualization
---
:::ultralytics.yolo.utils.plotting.feature_visualization
### ::: ultralytics.yolo.utils.plotting.feature_visualization
<br><br>

@ -3,32 +3,32 @@ description: Improve your YOLO models with Ultralytics' TaskAlignedAssigner, sel
keywords: Ultrayltics, YOLO, select_candidates_in_gts, make_anchor, bbox2dist, object detection, tracking
---
# TaskAlignedAssigner
## TaskAlignedAssigner
---
:::ultralytics.yolo.utils.tal.TaskAlignedAssigner
### ::: ultralytics.yolo.utils.tal.TaskAlignedAssigner
<br><br>
# select_candidates_in_gts
## select_candidates_in_gts
---
:::ultralytics.yolo.utils.tal.select_candidates_in_gts
### ::: ultralytics.yolo.utils.tal.select_candidates_in_gts
<br><br>
# select_highest_overlaps
## select_highest_overlaps
---
:::ultralytics.yolo.utils.tal.select_highest_overlaps
### ::: ultralytics.yolo.utils.tal.select_highest_overlaps
<br><br>
# make_anchors
## make_anchors
---
:::ultralytics.yolo.utils.tal.make_anchors
### ::: ultralytics.yolo.utils.tal.make_anchors
<br><br>
# dist2bbox
## dist2bbox
---
:::ultralytics.yolo.utils.tal.dist2bbox
### ::: ultralytics.yolo.utils.tal.dist2bbox
<br><br>
# bbox2dist
## bbox2dist
---
:::ultralytics.yolo.utils.tal.bbox2dist
### ::: ultralytics.yolo.utils.tal.bbox2dist
<br><br>

@ -3,132 +3,132 @@ description: Optimize your PyTorch models with Ultralytics YOLO's torch_utils fu
keywords: Ultralytics YOLO, Torch, Utils, Pytorch, Object Detection
---
# ModelEMA
## ModelEMA
---
:::ultralytics.yolo.utils.torch_utils.ModelEMA
### ::: ultralytics.yolo.utils.torch_utils.ModelEMA
<br><br>
# EarlyStopping
## EarlyStopping
---
:::ultralytics.yolo.utils.torch_utils.EarlyStopping
### ::: ultralytics.yolo.utils.torch_utils.EarlyStopping
<br><br>
# torch_distributed_zero_first
## torch_distributed_zero_first
---
:::ultralytics.yolo.utils.torch_utils.torch_distributed_zero_first
### ::: ultralytics.yolo.utils.torch_utils.torch_distributed_zero_first
<br><br>
# smart_inference_mode
## smart_inference_mode
---
:::ultralytics.yolo.utils.torch_utils.smart_inference_mode
### ::: ultralytics.yolo.utils.torch_utils.smart_inference_mode
<br><br>
# select_device
## select_device
---
:::ultralytics.yolo.utils.torch_utils.select_device
### ::: ultralytics.yolo.utils.torch_utils.select_device
<br><br>
# time_sync
## time_sync
---
:::ultralytics.yolo.utils.torch_utils.time_sync
### ::: ultralytics.yolo.utils.torch_utils.time_sync
<br><br>
# fuse_conv_and_bn
## fuse_conv_and_bn
---
:::ultralytics.yolo.utils.torch_utils.fuse_conv_and_bn
### ::: ultralytics.yolo.utils.torch_utils.fuse_conv_and_bn
<br><br>
# fuse_deconv_and_bn
## fuse_deconv_and_bn
---
:::ultralytics.yolo.utils.torch_utils.fuse_deconv_and_bn
### ::: ultralytics.yolo.utils.torch_utils.fuse_deconv_and_bn
<br><br>
# model_info
## model_info
---
:::ultralytics.yolo.utils.torch_utils.model_info
### ::: ultralytics.yolo.utils.torch_utils.model_info
<br><br>
# get_num_params
## get_num_params
---
:::ultralytics.yolo.utils.torch_utils.get_num_params
### ::: ultralytics.yolo.utils.torch_utils.get_num_params
<br><br>
# get_num_gradients
## get_num_gradients
---
:::ultralytics.yolo.utils.torch_utils.get_num_gradients
### ::: ultralytics.yolo.utils.torch_utils.get_num_gradients
<br><br>
# model_info_for_loggers
## model_info_for_loggers
---
:::ultralytics.yolo.utils.torch_utils.model_info_for_loggers
### ::: ultralytics.yolo.utils.torch_utils.model_info_for_loggers
<br><br>
# get_flops
## get_flops
---
:::ultralytics.yolo.utils.torch_utils.get_flops
### ::: ultralytics.yolo.utils.torch_utils.get_flops
<br><br>
# get_flops_with_torch_profiler
## get_flops_with_torch_profiler
---
:::ultralytics.yolo.utils.torch_utils.get_flops_with_torch_profiler
### ::: ultralytics.yolo.utils.torch_utils.get_flops_with_torch_profiler
<br><br>
# initialize_weights
## initialize_weights
---
:::ultralytics.yolo.utils.torch_utils.initialize_weights
### ::: ultralytics.yolo.utils.torch_utils.initialize_weights
<br><br>
# scale_img
## scale_img
---
:::ultralytics.yolo.utils.torch_utils.scale_img
### ::: ultralytics.yolo.utils.torch_utils.scale_img
<br><br>
# make_divisible
## make_divisible
---
:::ultralytics.yolo.utils.torch_utils.make_divisible
### ::: ultralytics.yolo.utils.torch_utils.make_divisible
<br><br>
# copy_attr
## copy_attr
---
:::ultralytics.yolo.utils.torch_utils.copy_attr
### ::: ultralytics.yolo.utils.torch_utils.copy_attr
<br><br>
# get_latest_opset
## get_latest_opset
---
:::ultralytics.yolo.utils.torch_utils.get_latest_opset
### ::: ultralytics.yolo.utils.torch_utils.get_latest_opset
<br><br>
# intersect_dicts
## intersect_dicts
---
:::ultralytics.yolo.utils.torch_utils.intersect_dicts
### ::: ultralytics.yolo.utils.torch_utils.intersect_dicts
<br><br>
# is_parallel
## is_parallel
---
:::ultralytics.yolo.utils.torch_utils.is_parallel
### ::: ultralytics.yolo.utils.torch_utils.is_parallel
<br><br>
# de_parallel
## de_parallel
---
:::ultralytics.yolo.utils.torch_utils.de_parallel
### ::: ultralytics.yolo.utils.torch_utils.de_parallel
<br><br>
# one_cycle
## one_cycle
---
:::ultralytics.yolo.utils.torch_utils.one_cycle
### ::: ultralytics.yolo.utils.torch_utils.one_cycle
<br><br>
# init_seeds
## init_seeds
---
:::ultralytics.yolo.utils.torch_utils.init_seeds
### ::: ultralytics.yolo.utils.torch_utils.init_seeds
<br><br>
# strip_optimizer
## strip_optimizer
---
:::ultralytics.yolo.utils.torch_utils.strip_optimizer
### ::: ultralytics.yolo.utils.torch_utils.strip_optimizer
<br><br>
# profile
## profile
---
:::ultralytics.yolo.utils.torch_utils.profile
### ::: ultralytics.yolo.utils.torch_utils.profile
<br><br>

@ -3,12 +3,12 @@ description: Learn how to use ClassificationPredictor in Ultralytics YOLOv8 for
keywords: Ultralytics, YOLO, v8, Classify Predictor, object detection, classification, computer vision
---
# ClassificationPredictor
## ClassificationPredictor
---
:::ultralytics.yolo.v8.classify.predict.ClassificationPredictor
### ::: ultralytics.yolo.v8.classify.predict.ClassificationPredictor
<br><br>
# predict
## predict
---
:::ultralytics.yolo.v8.classify.predict.predict
### ::: ultralytics.yolo.v8.classify.predict.predict
<br><br>

@ -3,12 +3,12 @@ description: Train a custom image classification model using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, object detection, classification, training, API
---
# ClassificationTrainer
## ClassificationTrainer
---
:::ultralytics.yolo.v8.classify.train.ClassificationTrainer
### ::: ultralytics.yolo.v8.classify.train.ClassificationTrainer
<br><br>
# train
## train
---
:::ultralytics.yolo.v8.classify.train.train
### ::: ultralytics.yolo.v8.classify.train.train
<br><br>

@ -3,12 +3,12 @@ description: Ensure model classification accuracy with Ultralytics YOLO's Classi
keywords: ClassificationValidator, Ultralytics YOLO, Validation, Data Science, Deep Learning
---
# ClassificationValidator
## ClassificationValidator
---
:::ultralytics.yolo.v8.classify.val.ClassificationValidator
### ::: ultralytics.yolo.v8.classify.val.ClassificationValidator
<br><br>
# val
## val
---
:::ultralytics.yolo.v8.classify.val.val
### ::: ultralytics.yolo.v8.classify.val.val
<br><br>

@ -3,12 +3,12 @@ description: Detect and predict objects in images and videos using the Ultralyti
keywords: detectionpredictor, ultralytics yolo, object detection, neural network, machine learning
---
# DetectionPredictor
## DetectionPredictor
---
:::ultralytics.yolo.v8.detect.predict.DetectionPredictor
### ::: ultralytics.yolo.v8.detect.predict.DetectionPredictor
<br><br>
# predict
## predict
---
:::ultralytics.yolo.v8.detect.predict.predict
### ::: ultralytics.yolo.v8.detect.predict.predict
<br><br>

@ -3,12 +3,12 @@ description: Train and optimize custom object detection models with Ultralytics
keywords: DetectionTrainer, Ultralytics YOLO, custom object detection, train models, AI applications
---
# DetectionTrainer
## DetectionTrainer
---
:::ultralytics.yolo.v8.detect.train.DetectionTrainer
### ::: ultralytics.yolo.v8.detect.train.DetectionTrainer
<br><br>
# train
## train
---
:::ultralytics.yolo.v8.detect.train.train
### ::: ultralytics.yolo.v8.detect.train.train
<br><br>

@ -3,12 +3,12 @@ description: Validate YOLOv5 detections using this PyTorch module. Ensure model
keywords: detection, validator, YOLOv5, object detection, model improvement, Ultralytics Docs
---
# DetectionValidator
## DetectionValidator
---
:::ultralytics.yolo.v8.detect.val.DetectionValidator
### ::: ultralytics.yolo.v8.detect.val.DetectionValidator
<br><br>
# val
## val
---
:::ultralytics.yolo.v8.detect.val.val
### ::: ultralytics.yolo.v8.detect.val.val
<br><br>

@ -3,12 +3,12 @@ description: Predict human pose coordinates and confidence scores using YOLOv5.
keywords: Ultralytics, YOLO, v8, documentation, PosePredictor, pose prediction, pose estimation, predict method
---
# PosePredictor
## PosePredictor
---
:::ultralytics.yolo.v8.pose.predict.PosePredictor
### ::: ultralytics.yolo.v8.pose.predict.PosePredictor
<br><br>
# predict
## predict
---
:::ultralytics.yolo.v8.pose.predict.predict
### ::: ultralytics.yolo.v8.pose.predict.predict
<br><br>

@ -3,12 +3,12 @@ description: Boost posture detection using PoseTrainer and train models using tr
keywords: PoseTrainer, human pose models, deep learning, computer vision, Ultralytics YOLO, v8
---
# PoseTrainer
## PoseTrainer
---
:::ultralytics.yolo.v8.pose.train.PoseTrainer
### ::: ultralytics.yolo.v8.pose.train.PoseTrainer
<br><br>
# train
## train
---
:::ultralytics.yolo.v8.pose.train.train
### ::: ultralytics.yolo.v8.pose.train.train
<br><br>

@ -3,12 +3,12 @@ description: Ensure proper human poses in images with YOLOv8 Pose Validation, pa
keywords: PoseValidator, Ultralytics YOLO, object detection, pose analysis, validation
---
# PoseValidator
## PoseValidator
---
:::ultralytics.yolo.v8.pose.val.PoseValidator
### ::: ultralytics.yolo.v8.pose.val.PoseValidator
<br><br>
# val
## val
---
:::ultralytics.yolo.v8.pose.val.val
### ::: ultralytics.yolo.v8.pose.val.val
<br><br>

@ -3,12 +3,12 @@ description: '"Use SegmentationPredictor in YOLOv8 for efficient object detectio
keywords: Ultralytics YOLO, SegmentationPredictor, object detection, segmentation masks, predict
---
# SegmentationPredictor
## SegmentationPredictor
---
:::ultralytics.yolo.v8.segment.predict.SegmentationPredictor
### ::: ultralytics.yolo.v8.segment.predict.SegmentationPredictor
<br><br>
# predict
## predict
---
:::ultralytics.yolo.v8.segment.predict.predict
### ::: ultralytics.yolo.v8.segment.predict.predict
<br><br>

@ -3,12 +3,12 @@ description: Learn about SegmentationTrainer and Train in Ultralytics YOLO v8 fo
keywords: SegmentationTrainer, Ultralytics YOLO, object detection, segmentation, train, tutorial, guide, code examples
---
# SegmentationTrainer
## SegmentationTrainer
---
:::ultralytics.yolo.v8.segment.train.SegmentationTrainer
### ::: ultralytics.yolo.v8.segment.train.SegmentationTrainer
<br><br>
# train
## train
---
:::ultralytics.yolo.v8.segment.train.train
### ::: ultralytics.yolo.v8.segment.train.train
<br><br>

@ -3,12 +3,12 @@ description: Ensure segmentation quality on large datasets with SegmentationVali
keywords: SegmentationValidator, YOLOv8, Ultralytics Docs, segmentation model, validation
---
# SegmentationValidator
## SegmentationValidator
---
:::ultralytics.yolo.v8.segment.val.SegmentationValidator
### ::: ultralytics.yolo.v8.segment.val.SegmentationValidator
<br><br>
# val
## val
---
:::ultralytics.yolo.v8.segment.val.val
### ::: ultralytics.yolo.v8.segment.val.val
<br><br>

@ -33,6 +33,7 @@ th, td {
/* Table format like GitHub ----------------------------------------------------------------------------------------- */
/* Code block vertical scroll */
.md-typeset pre > code {
div.highlight {
max-height: 20rem;
overflow-y: auto; /* for adding a scrollbar when needed */
}

@ -54,8 +54,8 @@ class AutoBackend(nn.Module):
Args:
weights (str): The path to the weights file. Default: 'yolov8n.pt'
device (torch.device): The device to run the model on.
dnn (bool): Use OpenCV's DNN module for inference if True, defaults to False.
data (str), (Path): Additional data.yaml file for class names, optional
dnn (bool): Use OpenCV DNN module for inference if True, defaults to False.
data (str | Path | optional): Additional data.yaml file for class names.
fp16 (bool): If True, use half precision. Default: False
fuse (bool): Whether to fuse the model or not. Default: True
verbose (bool): Whether to run in verbose mode or not. Default: True

@ -124,7 +124,8 @@ class AutoShape(nn.Module):
class Detections:
# YOLOv8 detections class for inference results
""" YOLOv8 detections class for inference results"""
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
"""Initialize object attributes for YOLO detection results."""
super().__init__()

@ -190,7 +190,7 @@ class BaseModel(nn.Module):
"""Load the weights into the model.
Args:
weights (dict) or (torch.nn.Module): The pre-trained weights to be loaded.
weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
"""
model = weights['model'] if isinstance(weights, dict) else weights # torchvision models are not dicts
@ -701,7 +701,7 @@ def guess_model_scale(model_path):
which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string.
Args:
model_path (str) or (Path): The path to the YOLO model's YAML file.
model_path (str | Path): The path to the YOLO model's YAML file.
Returns:
(str): The size character of the model's scale, which can be n, s, m, l, or x.
@ -717,7 +717,7 @@ def guess_model_task(model):
Guess the task of a PyTorch model from its architecture or configuration.
Args:
model (nn.Module) or (dict): PyTorch model or model configuration in YAML format.
model (nn.Module | dict): PyTorch model or model configuration in YAML format.
Returns:
(str): Task of the model ('detect', 'segment', 'classify', 'pose').

@ -80,8 +80,8 @@ def cfg2dict(cfg):
"""
Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
Inputs:
cfg (str) or (Path) or (SimpleNamespace): Configuration object to be converted to a dictionary.
Args:
cfg (str | Path | SimpleNamespace): Configuration object to be converted to a dictionary.
Returns:
cfg (dict): Configuration object in dictionary format.
@ -98,8 +98,8 @@ def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, ove
Load and merge configuration data from a file or dictionary.
Args:
cfg (str) or (Path) or (Dict) or (SimpleNamespace): Configuration data.
overrides (str) or (Dict), optional: Overrides in the form of a file name or a dictionary. Default is None.
cfg (str | Path | Dict | SimpleNamespace): Configuration data.
overrides (str | Dict | optional): Overrides in the form of a file name or a dictionary. Default is None.
Returns:
(SimpleNamespace): Training arguments namespace.
@ -168,9 +168,9 @@ def check_cfg_mismatch(base: Dict, custom: Dict, e=None):
This function checks for any mismatched keys between a custom configuration list and a base configuration list.
If any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
Inputs:
- custom (Dict): a dictionary of custom configuration options
- base (Dict): a dictionary of base configuration options
Args:
custom (Dict): a dictionary of custom configuration options
base (Dict): a dictionary of base configuration options
"""
custom = _handle_deprecation(custom)
base, custom = (set(x.keys()) for x in (base, custom))

@ -13,7 +13,7 @@ def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='',
det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'.
sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'.
device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available).
output_dir (str, None, optional): Directory to save the annotated results.
output_dir (str | None | optional): Directory to save the annotated results.
Defaults to a 'labels' folder in the same directory as 'data'.
"""
device = select_device(device)

@ -223,7 +223,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
root (str): Dataset path.
args (Namespace): Argument parser containing dataset related settings.
augment (bool, optional): True if dataset should be augmented, False otherwise. Defaults to False.
cache (Union[bool, str], optional): Cache setting, can be True, False, 'ram' or 'disk'. Defaults to False.
cache (bool | str | optional): Cache setting, can be True, False, 'ram' or 'disk'. Defaults to False.
"""
super().__init__(root=root)
if augment and args.fraction < 1.0: # reduce training fraction

@ -129,7 +129,7 @@ class YOLO:
Args:
cfg (str): model configuration file
task (str) or (None): model task
task (str | None): model task
verbose (bool): display model info on load
"""
cfg_dict = yaml_model_load(cfg)
@ -149,7 +149,7 @@ class YOLO:
Args:
weights (str): model checkpoint to be loaded
task (str) or (None): model task
task (str | None): model task
"""
suffix = Path(weights).suffix
if suffix == '.pt':

@ -355,23 +355,23 @@ class Boxes(BaseTensor):
A class for storing and manipulating detection boxes.
Args:
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6). The last two columns should contain confidence and class values.
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
boxes (torch.Tensor) or (numpy.ndarray): The detection boxes with shape (num_boxes, 6).
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
boxes (torch.Tensor | numpy.ndarray): The detection boxes with shape (num_boxes, 6).
orig_shape (torch.Tensor | numpy.ndarray): Original image size, in the format (height, width).
is_track (bool): True if the boxes also include track IDs, False otherwise.
Properties:
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
id (torch.Tensor) or (numpy.ndarray): The track IDs of the boxes (if available).
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format.
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format.
xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size.
xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size.
data (torch.Tensor): The raw bboxes tensor
Methods:

@ -422,7 +422,7 @@ def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
Check if a directory is writeable.
Args:
dir_path (str) or (Path): The path to the directory.
dir_path (str | Path): The path to the directory.
Returns:
(bool): True if the directory is writeable, False otherwise.
@ -467,7 +467,7 @@ def get_git_dir():
If the current file is not part of a git repository, returns None.
Returns:
(Path) or (None): Git root directory if found or None if not found.
(Path | None): Git root directory if found or None if not found.
"""
for d in Path(__file__).parents:
if (d / '.git').is_dir():
@ -480,7 +480,7 @@ def get_git_origin_url():
Retrieves the origin URL of a git repository.
Returns:
(str) or (None): The origin URL of the git repository.
(str | None): The origin URL of the git repository.
"""
if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError):
@ -494,7 +494,7 @@ def get_git_branch():
Returns the current git branch name. If not in a git repository, returns None.
Returns:
(str) or (None): The current git branch name.
(str | None): The current git branch name.
"""
if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError):

@ -51,13 +51,13 @@ def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
Benchmark a YOLO model across different formats for speed and accuracy.
Args:
model (Union[str, Path], optional): Path to the model file or directory. Default is
model (str | Path | optional): Path to the model file or directory. Default is
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'.
imgsz (int, optional): Image size for the benchmark. Default is 160.
half (bool, optional): Use half-precision for the model if True. Default is False.
int8 (bool, optional): Use int8-precision for the model if True. Default is False.
device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'.
hard_fail (Union[bool, float], optional): If True or a float, assert benchmarks pass with given metric.
hard_fail (bool | float | optional): If True or a float, assert benchmarks pass with given metric.
Default is False.
Returns:

@ -47,7 +47,7 @@ def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value.
Args:
imgsz (int) or (cList[int]): Image size.
imgsz (int | cList[int]): Image size.
stride (int): Stride value.
min_dim (int): Minimum number of dimensions.
floor (int): Minimum allowed value for image size.

@ -102,7 +102,7 @@ class Bboxes:
def mul(self, scale):
"""
Args:
scale (tuple) or (list) or (int): the scale for four coords.
scale (tuple | list | int): the scale for four coords.
"""
if isinstance(scale, Number):
scale = to_4tuple(scale)
@ -116,7 +116,7 @@ class Bboxes:
def add(self, offset):
"""
Args:
offset (tuple) or (list) or (int): the offset for four coords.
offset (tuple | list | int): the offset for four coords.
"""
if isinstance(offset, Number):
offset = to_4tuple(offset)

@ -123,7 +123,7 @@ def make_divisible(x, divisor):
Args:
x (int): The number to make divisible.
divisor (int) or (torch.Tensor): The divisor.
divisor (int | torch.Tensor): The divisor.
Returns:
(int): The nearest number divisible by the divisor.
@ -166,7 +166,7 @@ def non_max_suppression(
list contains the apriori labels for a given image. The list should be in the format
output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
max_det (int): The maximum number of boxes to keep after NMS.
nc (int): (optional) The number of classes output by the model. Any indices after this will be considered masks.
nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.
max_time_img (float): The maximum time (seconds) for processing one image.
max_nms (int): The maximum number of boxes into torchvision.ops.nms().
max_wh (int): The maximum box width and height in pixels
@ -290,7 +290,7 @@ def clip_coords(coords, shape):
Clip line coordinates to the image boundaries.
Args:
coords (torch.Tensor) or (numpy.ndarray): A list of line coordinates.
coords (torch.Tensor | numpy.ndarray): A list of line coordinates.
shape (tuple): A tuple of integers representing the size of the image in the format (height, width).
Returns:
@ -347,9 +347,9 @@ def xyxy2xywh(x):
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format.
Args:
x (np.ndarray) or (torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
@ -365,9 +365,9 @@ def xywh2xyxy(x):
top-left corner and (x2, y2) is the bottom-right corner.
Args:
x (np.ndarray) or (torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.
Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
@ -382,13 +382,13 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
Convert normalized bounding box coordinates to pixel coordinates.
Args:
x (np.ndarray) or (torch.Tensor): The bounding box coordinates.
x (np.ndarray | torch.Tensor): The bounding box coordinates.
w (int): Width of the image. Defaults to 640
h (int): Height of the image. Defaults to 640
padw (int): Padding width. Defaults to 0
padh (int): Padding height. Defaults to 0
Returns:
y (np.ndarray) or (torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where
y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where
x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
@ -405,13 +405,13 @@ def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
x, y, width and height are normalized to image dimensions
Args:
x (np.ndarray) or (torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
w (int): The width of the image. Defaults to 640
h (int): The height of the image. Defaults to 640
clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False
eps (float): The minimum value of the box's width and height. Defaults to 0.0
Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
"""
if clip:
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
@ -428,13 +428,13 @@ def xyn2xy(x, w=640, h=640, padw=0, padh=0):
Convert normalized coordinates to pixel coordinates of shape (n,2)
Args:
x (np.ndarray) or (torch.Tensor): The input tensor of normalized bounding box coordinates
x (np.ndarray | torch.Tensor): The input tensor of normalized bounding box coordinates
w (int): The width of the image. Defaults to 640
h (int): The height of the image. Defaults to 640
padw (int): The width of the padding. Defaults to 0
padh (int): The height of the padding. Defaults to 0
Returns:
y (np.ndarray) or (torch.Tensor): The x and y coordinates of the top left corner of the bounding box
y (np.ndarray | torch.Tensor): The x and y coordinates of the top left corner of the bounding box
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = w * x[..., 0] + padw # top left x
@ -447,9 +447,9 @@ def xywh2ltwh(x):
Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.
Args:
x (np.ndarray) or (torch.Tensor): The input tensor with the bounding box coordinates in the xywh format
x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format
Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in the xyltwh format
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
@ -462,9 +462,9 @@ def xyxy2ltwh(x):
Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right
Args:
x (np.ndarray) or (torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format
x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format
Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in the xyltwh format.
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 2] = x[:, 2] - x[:, 0] # width
@ -490,10 +490,10 @@ def ltwh2xyxy(x):
It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
Args:
x (np.ndarray) or (torch.Tensor): the input image
x (np.ndarray | torch.Tensor): the input image
Returns:
y (np.ndarray) or (torch.Tensor): the xyxy coordinates of the bounding boxes.
y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 2] = x[:, 2] + x[:, 0] # width

Loading…
Cancel
Save