Rostislav Lán
ff792776ff
|
2 years ago | |
---|---|---|
conf | 2 years ago | |
res | 2 years ago | |
src | 2 years ago | |
.gitignore | 2 years ago | |
README.md | 2 years ago | |
requirements.txt | 2 years ago |
README.md
About this Project
This project is being developed as a practical part of bachelor's thesis at Brno Universtiy of Technology - Faculty of Information Studies. It is as of now a work in progress, no results guaranteed.
The topic of this thesis is Generating a 3D Fingerprint Model. This application can be used to apply series of image processing filters to a fingerprint image to make it more suitable for conversion to 3D stl model and printing. It also includes the functionality to use generated image as a height map for generating an stl model. This model can either be planar or curved.
Prerequisites
For now this is only viable for ubuntu gnu/linux machines Before cloning repository, you need these to succesfully use the application.
-
python version 3.10 is a requirement might work on earlier python 3 versions
sudo apt install python3.10
-
virtualenv for virtual enviroment creation
pip install virtualenv
Installation
-
Go to a suitable installation folder, for example Documents.
cd /home/username/Documents
-
Clone the repository to a suitable directory, for example
git clone ssh://git@strade.fit.vutbr.cz:3022/xlanro00/BP_DP-xlanro00.git
-
Go inside cloned directory
cd BP_DP-xlanro00
-
Create and enter the virtual enviroment.
virtualenv .venv && source .venv/bin/activate
-
Install required python modules from requirements.txt.
pip install -r requirements.txt
-
Run the application, as an example there is a file in res/examples called Palec_P4.tif. This is shown in the section below.
Filtering images
- You will need to enter the virtual enviroment every time you want to use the application.
source .venv/bin/activate
Once all the requirements are installed, the program is ready to use. There are two ways to enter the filters:
-
manually list filter names and parameters from command line
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_cline.png 600 total_variation weight=0.15 median ksize=5
-
from preset saved in a json config file, that can be used to tune and modify existing presetrs, or create new ones
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_preset.png 600 --config config/config.json git_example
Configuration and presets
There is an option to input the filter series as a preset from json configuration file. This preset is automatically stored inside a json file, which serves as a database for storing filters. This prevents losing filter preset information when modifying filter which was used to generate 3D models.
General format | Woking example |
---|---|
|
|
There is also an option to save current command line setting as a preset using -d switch:
-
General command for saving filter preset
python3 src/main.py input_file output_file dpi -d new_preset_name filters
-
Working example
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_cline.png 600 -d preset_gaussian gaussian sigma=1
All the filters used and their parameters are described below.
Available filters with parameters
-
median blur
- ksize - Kernel size (int)
-
gaussian blur
- sigma - Gaussian kernel standart deviation (int)
-
bilateral blur
- diameter - Diameter of pixel neighborhood used for filtering (int)
- sigmaColor - Standard deviation for grayvalue/color distance (int)
- sigmaSpace - Standard deviation for range distance in pixels (int)
-
bilateral_scikit
- sigmaColor - Standard deviation for grayvalue/color distance (float)
- sigmaSpace - Standard deviation for range distance in pixels (float)
-
nlmeans (non-local means)
- patch_size - Size of patches used for denoising (int)
- patch_distance - Distance in pixels where to search for patches (int)
- h - Cut-off distance, higher means more smoothed image (float)
-
total_variation
- weight - Denoising weight. (float)
-
block_match
- sigma - ? (?)
-
unsharp mask scikit
- radius - Radius of the gaussian filter (int)
- amount - Strength of the unsharp mask (float)
-
farid
-
meijering
-
sato
-
hessian
- sigmas - ? (float)
-
invert
-
scale_values
-
binarize
- threshold - value to cut differentiate pixels (int)
- maxval - maximal value (int) ??
- type - ? (str)
-
binarize_otsu
-
add_margin
- margin - number of pixels to add to the sides of the image (int)
- color - color value of newly added pixels (int)
-
erode
- kernel - kernel shape (numpy.matrix)
-
dilate
- kernel - kernel shape (numpy.matrix)
Comparison
Image before processing the fingerprint and after applying a presets.
Before | After |
---|---|
Generating curved finger model
It is possible to generate 3D printable stl model using --stl
switch, which requires aditional parameter containing stl filename.
In base mode the output model will be a curved finger model, with optional parameters following the filename controlling its shape.
First optional parameter is papilar line height, second rate of curvature along x axis and the third is the rate of curvature along y axis.
-
General form for curved stl generation
python3 src/main.py input_file output_file dpi --config config_file preset --stl c height_line height_base curvature_x curvature_y
-
Working example curved stl generation
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_preset.png 600 --config config/config.json git_example --stl c 2 10 2 2
Generating planar finger model
Using -p
switch makes the generated model planar.
Optional parameters are model base thickness and papilar lines height, they are set after stl file name.
-
General form for planar stl generation
python3 src/main.py input_file output_file dpi --config config_file preset --stl p height_line height_base
-
Working example planar stl generation
python3 src/main.py res/examples/Palec_P4.tif res/examples/Palec_P4_from_preset.png 600 --config config/config.json git_example --stl p 2 10
Mapping to existing finger model
This section will be added later, (if implemented) mapping of fingerprint to a given finger model.
- General form for planar stl generation
python3 src/main.py input_file output_file dpi --config config_file preset --stl m height_line height_base finger_file
Usage
usage: main.py [-h] [-m | --mirror | --no-mirror] input_file output_file dpi ([-c | --config config_file preset] | [filters ...]) [-s | --stl_file p height_line height_base | --stl_file c height_line height_base curv_rate_x curv_rate_y | --stl_file m height_line height_base finger_file]
Program for processing a 2D image into 3D fingerprint.
positional arguments: input_file input file path output_file output file path dpi dpi of used scanner filters list of filter names and their parameters in form [filter_name1 param1=value param2=value filter_name2 param1=value...]
options: -h, --help show this help message and exit -m, --mirror, --no-mirror switch to mirror input image -s [STL_FILE ...], --stl_file [STL_FILE ...] create stl model from processed image -c CONFIG CONFIG, --config CONFIG CONFIG pair: name of the config file with presets, name of the preset
Roadmap
- Load and store image
- Apply basic image processing filters
- Scale the image using given dpi
- Create filter library with more filters
- Add more suitable filters to the library
- Use presets from config files
- Add the option to save current filter preset to config file
- Add the option to modify filter parameters
- Convert the processed image to stl lithophane
- Add the option to curve the lithophane into the shape of a finger
- Add the option to map the fingerprint onto a given finger model
- Export final model ready for 3D print
Author
Rostislav Lán - xlanro00@stud.fit.vutbr.cz
Supervisor
Ing. Petr Malaník
Links
Project Link: https://strade.fit.vutbr.cz/git/xlanro00/BP_DP-xlanro00