Added curved fingerprint model generation, refactored most of the code.

master
Rostislav Lán 2 years ago
parent c5d412e462
commit 390232c4f0

@ -8,6 +8,7 @@ import numpy as np
import cv2 as cv import cv2 as cv
from skimage import filters as skiflt from skimage import filters as skiflt
from skimage import restoration as skirest from skimage import restoration as skirest
from scipy import signal as sig
# Parent class for all the filters # Parent class for all the filters
@ -33,8 +34,8 @@ class convolve(filter):
kernel = np.array(params["kernel"]) if params["kernel"] else np.ones( kernel = np.array(params["kernel"]) if params["kernel"] else np.ones(
(ksize, ksize), np.float32) / np.sqrt(ksize) (ksize, ksize), np.float32) / np.sqrt(ksize)
print("with params: ksize: " + #print("with params: ksize: " +
str(ksize) + " kernel: \n" + str(kernel)) # str(ksize) + " kernel: \n" + str(kernel))
self.img = cv.filter2D(self.img, -1, kernel) self.img = cv.filter2D(self.img, -1, kernel)
@ -56,8 +57,8 @@ class blur(filter):
anchor = (-1, -1) anchor = (-1, -1)
ksize = int(params["ksize"]) if params["ksize"] else 3 ksize = int(params["ksize"]) if params["ksize"] else 3
print("with params: ksize: " + #print("with params: ksize: " +
str(ksize) + " anchor: " + str(anchor)) # str(ksize) + " anchor: " + str(anchor))
self.img = cv.blur(self.img, ksize=(ksize, ksize), anchor=anchor) self.img = cv.blur(self.img, ksize=(ksize, ksize), anchor=anchor)
@ -72,13 +73,15 @@ class gaussian(filter):
sigmaX = float(params["sigmaX"]) if params["sigmaX"] else 0 sigmaX = float(params["sigmaX"]) if params["sigmaX"] else 0
sigmaY = float(params["sigmaY"]) if params["sigmaY"] else 0 sigmaY = float(params["sigmaY"]) if params["sigmaY"] else 0
print("with params: ksize: " + str(ksize) +
" sigmaX: " + str(sigmaX) + " sigmaY: " + str(sigmaY)) #print("with params: ksize: " + str(ksize) +
# " sigmaX: " + str(sigmaX) + " sigmaY: " + str(sigmaY))
self.img = cv.GaussianBlur(self.img, (ksize, ksize), sigmaX, sigmaY) self.img = cv.GaussianBlur(self.img, (ksize, ksize), sigmaX, sigmaY)
class median(filter): class median(filter):
''' Median blur filter from OpenCV. ''' Median blur filter from scikit-image.
Using this over opencv version as that one is limited to 5x5 kernel.
''' '''
def __init__(self, img): def __init__(self, img):
super().__init__(img) super().__init__(img)
@ -86,8 +89,8 @@ class median(filter):
def apply(self, params): def apply(self, params):
ksize = int(params["ksize"]) if params["ksize"] else 3 ksize = int(params["ksize"]) if params["ksize"] else 3
print("with params: ksize: " + str(ksize)) #print("with params: ksize: " + str(ksize))
self.img = cv.medianBlur(np.float32(self.img), ksize) self.img = skiflt.median(self.img, footprint=np.ones((ksize, ksize)))
class bilateral(filter): class bilateral(filter):
@ -102,8 +105,9 @@ class bilateral(filter):
sigmaColor = int(params["sigmaColor"]) if params["sigmaColor"] else 75 sigmaColor = int(params["sigmaColor"]) if params["sigmaColor"] else 75
sigmaSpace = int(params["sigmaSpace"]) if params["sigmaSpace"] else 75 sigmaSpace = int(params["sigmaSpace"]) if params["sigmaSpace"] else 75
print("with params: d: " + str(d) + " sigmaColor: " + #print("with params: d: " + str(d) + " sigmaColor: " +
str(sigmaColor) + " sigmaSpace: " + str(sigmaSpace)) # str(sigmaColor) + " sigmaSpace: " + str(sigmaSpace))
self.img = np.uint8(self.img)
self.img = cv.bilateralFilter(self.img, d, sigmaColor, sigmaSpace) self.img = cv.bilateralFilter(self.img, d, sigmaColor, sigmaSpace)
@ -119,8 +123,8 @@ class denoise(filter):
sWS = int(params["searchWindowSize"] sWS = int(params["searchWindowSize"]
) if params["searchWindowSize"] else 21 ) if params["searchWindowSize"] else 21
print("with params: h: " + str(h) + #print("with params: h: " + str(h) +
" tWS: " + str(tWS) + " sWS: " + str(sWS)) # " tWS: " + str(tWS) + " sWS: " + str(sWS))
self.img = np.uint8(self.img) self.img = np.uint8(self.img)
self.img = cv.fastNlMeansDenoising( self.img = cv.fastNlMeansDenoising(
self.img, h, tWS, sWS) self.img, h, tWS, sWS)
@ -146,9 +150,9 @@ class denoise_bilateral(filter):
) if params["channelAxis"] else None ) if params["channelAxis"] else None
iterations = int(params["iterations"]) if params["iterations"] else 1 iterations = int(params["iterations"]) if params["iterations"] else 1
print("with params: sigma_color: " + str(sigmaColor) + #print("with params: sigma_color: " + str(sigmaColor) +
" sigma_spatial: " + str(sigmaSpace) + " channel_axis: " + # " sigma_spatial: " + str(sigmaSpace) + " channel_axis: " +
str(channelAxis) + " iterations: " + str(iterations)) # str(channelAxis) + " iterations: " + str(iterations))
for i in range(iterations): for i in range(iterations):
self.img = skirest.denoise_bilateral( self.img = skirest.denoise_bilateral(
@ -172,8 +176,8 @@ class denoise_tv_chambolle(filter):
) if params["channelAxis"] else None ) if params["channelAxis"] else None
iterations = int(params["iterations"]) if params["iterations"] else 1 iterations = int(params["iterations"]) if params["iterations"] else 1
print("with params: weight: " + str(weight) + #print("with params: weight: " + str(weight) +
" channel_axis: " + str(channelAxis) + " iterations: " + str(iterations)) # " channel_axis: " + str(channelAxis) + " iterations: " + str(iterations))
for i in range(iterations): for i in range(iterations):
self.img = skirest.denoise_tv_chambolle( self.img = skirest.denoise_tv_chambolle(
self.img, weight=weight, channel_axis=channelAxis) self.img, weight=weight, channel_axis=channelAxis)
@ -190,7 +194,7 @@ class sharpen(filter):
kernel = np.matrix(params["kernel"]) if params["kernel"] else np.array( kernel = np.matrix(params["kernel"]) if params["kernel"] else np.array(
[[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) [[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
print("with params: kernel: \n" + str(kernel)) #print("with params: kernel: \n" + str(kernel))
self.img = cv.filter2D(self.img, ddepth=-1, kernel=kernel) self.img = cv.filter2D(self.img, ddepth=-1, kernel=kernel)
@ -211,8 +215,8 @@ class unsharp_mask(filter):
blurred = cv.medianBlur(self.img, ksize) blurred = cv.medianBlur(self.img, ksize)
lap = cv.Laplacian(blurred, cv.CV_32F) lap = cv.Laplacian(blurred, cv.CV_32F)
print("with params: strength: " + #print("with params: strength: " +
str(strength) + " ksize: " + str(ksize)) # str(strength) + " ksize: " + str(ksize))
self.img = blurred - strength*lap self.img = blurred - strength*lap
@ -235,8 +239,8 @@ class unsharp_mask_scikit(filter):
) if params["channelAxis"] else None ) if params["channelAxis"] else None
#self.img = cv.cvtColor(self.img, cv.COLOR_GRAY2RGB) #self.img = cv.cvtColor(self.img, cv.COLOR_GRAY2RGB)
print("with params: radius: " + #print("with params: radius: " +
str(radius) + " amount: " + str(amount)) # str(radius) + " amount: " + str(amount))
self.img = skiflt.unsharp_mask( self.img = skiflt.unsharp_mask(
self.img, radius=radius, amount=amount, channel_axis=channelAxis) self.img, radius=radius, amount=amount, channel_axis=channelAxis)
#self.img = cv.cvtColor(self.img, cv.COLOR_RGB2GRAY) #self.img = cv.cvtColor(self.img, cv.COLOR_RGB2GRAY)
@ -265,8 +269,39 @@ class morph(filter):
else: else:
anchor = (-1, -1) anchor = (-1, -1)
print("with params: kernel: \n" + str(kernel) + " anchor: " + #print("with params: kernel: \n" + str(kernel) + " anchor: " +
str(anchor) + " iterations: " + str(iterations) + " op: " + str(op)) # str(anchor) + " iterations: " + str(iterations) + " op: " + str(op))
self.img = cv.morphologyEx( self.img = cv.morphologyEx(
np.uint8(self.img), op=op, kernel=kernel, np.uint8(self.img), op=op, kernel=kernel,
anchor=anchor, iterations=iterations) anchor=anchor, iterations=iterations)
class gabor(filter):
''' Gabor filter from OpenCV.
Performs Gabor filtering on the image.
'''
def __init__(self, img):
super().__init__(img)
# TODO: not working properly
def apply(self, params):
ksize = int(params["ksize"]) if params["ksize"] else 31
sigma = float(params["sigma"]) if params["sigma"] else 10.0
theta = params["theta"] if params["theta"] else [0,np.pi/16,np.pi-np.pi/16]
lambd = float(params["lambd"]) if params["lambd"] else 10.0
gamma = float(params["gamma"]) if params["gamma"] else 0.02
psi = float(params["psi"]) if params["psi"] else 0.0
filters = []
for i in range(len(theta)):
g_kernel = cv.getGaborKernel(ksize=(ksize, ksize), sigma=sigma, theta=theta[i], lambd=lambd, gamma=gamma, psi=psi)
g_kernel = g_kernel / 1.5 * g_kernel.sum()
filters.append(g_kernel)
tmp = np.zeros_like(self.img)
for i in range(len(filters)):
tmp = cv.filter2D(self.img, -1, kernel=filters[i])
self.img += np.maximum(self.img, tmp)

@ -14,8 +14,8 @@ import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
#from PIL import Image #from PIL import Image
import cv2 as cv import cv2 as cv
from stl import mesh from stl import mesh
import math
# Import custom image filter library # Import custom image filter library
import filters as flt import filters as flt
@ -25,27 +25,25 @@ class app:
def __init__(self): def __init__(self):
# Parse arguments from command line # Parse arguments from command line
self.parse_arguments() self.parse_arguments()
self.params = {}
# List and dict for filters and corresponding parameters
self.filters = [] self.filters = []
self.params = {}
# Parse configuration from json file # Parse configuration from json config file
if self.args.config: if self.args.config:
self.config_file = self.args.config[0] self.config_file, self.preset_name = self.args.config
self.preset_name = self.args.config[1]
self.config = json.load(open(self.config_file)) self.config = json.load(open(self.config_file))
self.parse_conf() self.parse_conf()
# If no config file given, expect filters in command line elif self.args.filters:
else:
if not self.args.filters:
print("No filters given, saving original image")
print("No config file given, using command line arguments") print("No config file given, using command line arguments")
i = 0 i = 0
# Otherwise expect filters from command line
for filter in self.args.filters: for filter in self.args.filters:
if filter.find('=') == -1: if filter.find('=') == -1:
# if no '=' in filter, it is a new filter # if no '=' char in filter, it is a new filter name
self.filters.append(filter) self.filters.append(filter)
i += 1 i += 1
self.params[i] = {} # create empty dict for params self.params[i] = {} # create empty dict for params
@ -55,66 +53,113 @@ class app:
self.params[i][key] = value self.params[i][key] = value
self.parse_params(self.params[i]) self.parse_params(self.params[i])
if self.args.stl_file and len(self.args.stl_file) == 3:
self.stl_file = self.args.stl_file[0]
self.height_line = float(self.args.stl_file[1])
self.height_base = float(self.args.stl_file[2])
self.mode = "2d"
elif self.args.stl_file and len(self.args.stl_file) == 2:
self.stl_file = self.args.stl_file[0]
self.height_line = float(self.args.stl_file[1])
self.mode = "3d"
else: else:
print("No STL file given, saving image only") print("No filters given, saving original image")
exit(1)
self.input_file = self.args.input_file self.input_file = self.args.input_file
self.output_file = self.args.output_file self.output_file = self.args.output_file
self.dpi = self.args.dpi self.dpi = self.args.dpi
self.mirror = True if self.args.mirror else False self.mirror = True if self.args.mirror else False
if exists(self.input_file): if exists(self.input_file):
self.run() self.run_filtering()
else: else:
print("Input file does not exist", file=sys.stderr)
exit(1)
def run(self): self.error_exit("Input file " + self.input_file +
# read as numpy.array " does not exist")
self.img = cv.imread(
self.input_file, cv.IMREAD_GRAYSCALE).astype(np.uint8)
self.width = self.img.shape[1] if self.args.stl_file:
self.height = self.img.shape[0]
self.print_size(self.img.shape)
fig = plt.figure(figsize=(self.width/self.dpi, self.height/self.dpi),
frameon=False, dpi=self.dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.]) # Get stl filename
ax.set_axis_off() self.stl_file = self.args.stl_file[0]
fig.add_axes(ax)
if self.mirror is True: # Get mode and model parameters
self.mirror_image() if self.args.planar:
self.mode = "2d"
# Apply all filters and save image if len(self.args.stl_file) < 3:
self.apply_filter() self.height_base = 10
self.save_image(fig, ax) self.height_line = 2
plt.close() print(
if self.args.stl_file: "Warning: Too few arguments, using default values (10mm base, 2mm lines)")
self.make_model() else:
self.height_line = float(self.args.stl_file[1])
self.height_base = float(self.args.stl_file[2])
print("Base height:", self.height_base,
"mm, lines depth/height:", self.height_line, "mm")
else:
self.mode = "3d"
if len(self.args.stl_file) < 4:
self.height_line = 2
self.curv_rate_x = 0.5
self.curv_rate_y = 0.5
print(
"Warning: Too few arguments, using default values (2mm lines, curvature 0.5 on x, 0.5 on y)")
else:
self.height_line = float(self.args.stl_file[1])
self.curv_rate_x = float(
self.args.stl_file[2]) # finger depth
self.curv_rate_y = float(
self.args.stl_file[3]) # finger depth
# self.curv_rate_x = float(self.args.stl_file[2]) # excentricity x
# self.curv_rate_y = float(self.args.stl_file[3]) # excentricity y
print("Line height:", self.height_line,"mm, x axis curvature:", self.curv_rate_x,
", y axis curvature:", self.curv_rate_y)
print(self.mode, "mode selected")
self.run_stl()
def parse_arguments(self):
'''Parse arguments from command line using argparse library.
'''
parser = ap.ArgumentParser(prog='main.py',
description='Program for processing a 2D image into 3D fingerprint.',
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] [-p] input_file output_file dpi ([-c config_file preset | --config config_file preset] | [filters ...]) [-s stl_file | --stl stl_file height_line height_base | --stl_file stl_file height_line curv_rate_x curv_rate_y]')
# positional arguments
parser.add_argument("input_file", type=str, help="input file path")
parser.add_argument("output_file", type=str, help="output file path")
parser.add_argument("dpi", type=int, help="dpi of used scanner")
# boolean switch argument
parser.add_argument('-m', '--mirror', type=bool, action=ap.BooleanOptionalAction,
help="switch to mirror input image")
# another boolean switch argument, this time with value, name of the new file and dimensions
parser.add_argument('-s', '--stl_file', type=str, nargs='*',
help="create stl model from processed image")
# another boolean switch argument, this enables 2d mode
parser.add_argument('-p', '--planar', type=bool, action=ap.BooleanOptionalAction,
help="make stl shape planar instead of curved one")
# configuration file containing presets, preset name
# pair argument - give both or none
parser.add_argument('-c', '--config', nargs=2,
help='pair: name of the config file with presets, name of the preset')
# array of unknown length, all filter names saved inside
parser.add_argument('filters', type=str, nargs='*',
help="list of filter names and their parameters in form [filter_name1 param1=value param2=value filter_name2 param1=value...]")
self.args = parser.parse_args()
def parse_params(self, params): def parse_params(self, params):
''' Parse parameters of filters. '''Parse parameters of filters. Set to None if not given.
Set to None if not given. They are later set to default values in the filter method apply.
They are later set in the filter method.
''' '''
# TODO: possibly too bloated, sending all possible params to each filter
possible_params = {"h", "searchWindowSize", "templateWindowSize", possible_params = {"h", "searchWindowSize", "templateWindowSize",
"ksize", "kernel", "sigmaX", "sigmaY", "ksize", "kernel", "sigmaX", "sigmaY",
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations", "sigmaColor", "sigmaSpace", "d", "anchor", "iterations",
"op", "strength", "amount", "radius", "weight", "channelAxis"} "op", "strength", "amount", "radius", "weight", "channelAxis",
"theta", "sigma", "lambda", "gamma", "psi"}
for key in possible_params: for key in possible_params:
if params.get(key) is None: if params.get(key) is None:
params[key] = None params[key] = None
@ -122,162 +167,151 @@ class app:
params[key] = params[key] params[key] = params[key]
def parse_conf(self): def parse_conf(self):
''' Parse configuration file if one was given and store filters with their parameters '''Parse configuration file if one was given.
Store filters and their parameters.
''' '''
# Find preset in config file
if self.preset_name in self.config: if self.preset_name in self.config:
filter_array = self.config[self.preset_name] filter_array = self.config[self.preset_name]
# Iterate over filters in preset, store them and their parameters
for i, filter in enumerate(range(len(filter_array)), start=1): for i, filter in enumerate(range(len(filter_array)), start=1):
self.filters.append(filter_array[filter]["name"]) self.filters.append(filter_array[filter]["name"])
self.params[i] = {} self.params[i] = {}
for attribute, value in filter_array[filter].items(): for attribute, value in filter_array[filter].items():
# Filter name isn't needed in here
if attribute != "name": if attribute != "name":
self.params[i][attribute] = value self.params[i][attribute] = value
self.parse_params(self.params[i]) self.parse_params(self.params[i])
print("Loaded preset: " + self.preset_name + print("Loaded preset: " + self.preset_name +
" from file: " + self.config_file) " from file: " + self.config_file)
else: else:
print("Preset not found", file=sys.stderr) self.error_exit("Preset not found")
def parse_arguments(self): def error_exit(self, message):
''' Parse arguments from command line '''Print error message and exit.
''' '''
parser = ap.ArgumentParser(prog='main.py', print("ERROR:", message, file=sys.stderr)
description='Program for processing a 2D image into 3D fingerprint.', exit(1)
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] input_file output_file dpi \
([-c config_file preset | --config config_file preset] | [filters ...]) \
[-s stl_file | --stl_file stl_file depth_total depth_line]')
# positional arguments #------------------------- FILTERING -------------------------#
parser.add_argument("input_file", type=str, help="location with input file")
parser.add_argument("output_file", type=str, help="output file location")
parser.add_argument("dpi", type=int, help="scanner dpi")
# boolean switch argument def run_filtering(self):
parser.add_argument('-m', "--mirror", help="mirror input image", type=bool, action=ap.BooleanOptionalAction) '''Load from input file, store as numpy.array,
process image using filters and save to output file.
'''
# another boolean switch argument, this time with value, name of the new file and dimensions self.img = cv.imread(
parser.add_argument('-s', '--stl_file', type=str, nargs='*', self.input_file, cv.IMREAD_GRAYSCALE).astype(np.uint8)
help="make planar model from processed image", required=False)
# file with configuration containing presets, new preset name self.height, self.width = self.img.shape
# pair argument - give both or none print("Height: " + str(self.height) + " px and width: "
parser.add_argument('-c', '--config', nargs=2, + str(self.width) + " px", file=sys.stderr)
help='pair: name of the config file with presets, name of the preset') size = (self.width/self.dpi, self.height/self.dpi)
fig = plt.figure(figsize=size, frameon=False, dpi=self.dpi)
# array of unknown length, all filter names saved inside ax = plt.Axes(fig, [0., 0., 1., 1.])
parser.add_argument('filters', type=str, nargs='*', ax.set_axis_off()
help="list of filter names and their parameters in form [filter_name1 param1=value1 param2=value2 filter_name2 param1=value1...]") fig.add_axes(ax)
self.args = parser.parse_args()
def filter_factory(self, filter_name): if self.mirror is True:
''' Selects filter method of filters library. self.mirror_image()
'''
print("Applying " + filter_name + " filter ", end='') # Apply all filters and save image
return getattr(flt, filter_name) self.apply_filters()
self.save_image(fig, ax)
plt.close()
def mirror_image(self): def mirror_image(self):
''' Mirror image when mirroring is needed, '''Mirror image using opencv, should be used if we want a positive model.
should be used only if we want a positive model
''' '''
print("Mirroring image", file=sys.stderr) print("Mirroring image", file=sys.stderr)
self.img = cv.flip(self.img, 1) # 1 for vertical mirror self.img = cv.flip(self.img, 1) # 1 for vertical mirror
def apply_filter(self): def apply_filters(self):
''' Apply filters to image. '''Apply filters to image one by one.
In case none were given, pass and save original image to the output file.
Apply the filters one by one, if none were given, just save original image output.
''' '''
if len(self.filters) == 0: if len(self.filters) == 0:
# No filter given, just save the image
pass pass
else: else:
# Apply all filters # Apply all filters
for i, filter_name in enumerate(self.filters): for i, filter_name in enumerate(self.filters):
filter = self.filter_factory(filter_name) # Get filter class from filter.py, use the apply method
filter = getattr(flt, filter_name)
filter.apply(self, self.params[i+1]) filter.apply(self, self.params[i+1])
def save_image(self, fig, ax): def save_image(self, fig, ax):
''' Save processed image. '''Save processed image to the output file.
Colormap set to grayscale to avoid color mismatch.
''' '''
print("Saving image to ", self.output_file, file=sys.stderr) print("Saving image to", self.output_file, file=sys.stderr)
# Colormap must be set to grayscale to avoid color mismatch.
ax.imshow(self.img, cmap="gray") ax.imshow(self.img, cmap="gray")
fig.savefig(fname=self.output_file, dpi='figure') fig.savefig(fname=self.output_file, dpi=self.dpi)
def print_size(self, size): #------------------------- STL GENERATION -------------------------#
print("Image of height: " + str(size[0]) +
" px and width: " + str(size[1]) + " px", file=sys.stderr)
def make_model(self): def run_stl(self):
'''After processing image, make a lithophane from it. '''Make heightmap, create mesh and save as stl file.
''' '''
print("Making heighthmap", file=sys.stderr)
self.prepare_heightmap() self.prepare_heightmap()
if self.mode == "2d": if self.mode == "2d":
print("Converting to stl format", file=sys.stderr)
self.make_stl_planar() self.make_stl_planar()
plt.show()
print(f"Saving lithophane to ", self.stl_file, file=sys.stderr)
self.save_stl_2d()
elif self.mode == "3d": elif self.mode == "3d":
self.map_image_to_3d() self.make_stl_curved()
plt.show()
self.save_stl_3d()
else: else:
print("Mode not supported", file=sys.stderr) self.error_exit("Mode not supported")
exit(1)
plt.show()
print(f"Saving model to ", self.stl_file, file=sys.stderr)
self.save_stl()
def prepare_heightmap(self): def prepare_heightmap(self):
''' Create numpy meshgrid. '''Modify image values to get usable height/depth values.
Modify image values to get usable depth values. Check validity of dimension parameters.
''' '''
# TODO: redo, too complicated, add extra params, redo checks
if self.img.dtype == np.float32 or self.img.dtype == np.float64: if self.img.dtype == np.float32 or self.img.dtype == np.float64:
print("Converting to uint8", file=sys.stderr) print("Converting to uint8", file=sys.stderr)
self.img = self.img * 255 self.img = self.img * 255
self.img = self.img.astype(np.uint8) self.img = self.img.astype(np.uint8)
print("Creating mesh", file=sys.stderr)
if self.mode == "2d": if self.mode == "2d":
if self.height_base <= 0: if self.height_base <= 0:
print("Depth of plate height must be positive", file=sys.stderr) self.error_exit("Depth of plate height must be positive")
exit(1)
if self.height_line + self.height_base <= 0: if self.height_line + self.height_base <= 0:
print("Line depth must be less than plate thickness", file=sys.stderr) self.error_exit("Line depth must be less than plate thickness")
exit(1)
print("Base height:", self.height_base,
"mm, lines depth/height:", self.height_line, "mm")
# Transform image values to get a heightmap # Transform image values to get a heightmap
if self.height_line < 0:
self.img = (self.height_base + (1 - self.img/255)
* self.height_line)
else:
self.img = (self.height_base + (1 - self.img/255) self.img = (self.height_base + (1 - self.img/255)
* self.height_line) * self.height_line)
if self.mode == "3d": if self.mode == "3d":
#TODO add some checks and print info # TODO check curvature values and print info
pass # TODO: copy pasta code, remove
# Transform image values to get a heightmap
self.img = (1 - self.img/255) * self.height_line
def add_faces(self, faces, c): def append_faces(self, faces, c):
# Function to add faces to the list # Function to add faces to the list
faces.append([c, c + 1, c + 2]) faces.append([c, c + 1, c + 2])
faces.append([c + 1, c + 3, c + 2]) faces.append([c + 1, c + 3, c + 2])
return c + 4 return c + 4
def make_stl_planar(self): def make_stl_planar(self):
''' Create mesh from meshgrid. '''Create mesh from meshgrid.
Create vertices from meshgrid, add depth values from image. Create vertices from meshgrid, add depth values from image.
Create faces from vertices. Add vectors and faces to the model. Create faces from vertices. Add vectors and faces to the model.
@ -299,7 +333,7 @@ class app:
self.meshgrid_2d = np.meshgrid(x, y) self.meshgrid_2d = np.meshgrid(x, y)
# Add the image matrix to the 2D meshgrid and create 1D array of 3D points # Add the image matrix to the 2D meshgrid and create 1D array of 3D pointsd
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_2d))).T vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_2d))).T
z = (self.img / 10).reshape(-1, 1) z = (self.img / 10).reshape(-1, 1)
vertex_arr = np.concatenate((vertex_arr, z), axis=1) vertex_arr = np.concatenate((vertex_arr, z), axis=1)
@ -320,7 +354,7 @@ class app:
vertices.append([vertex_arr[i+1][j]]) vertices.append([vertex_arr[i+1][j]])
vertices.append([vertex_arr[i+1][j+1]]) vertices.append([vertex_arr[i+1][j+1]])
count = self.add_faces(faces, count) count = self.append_faces(faces, count)
# Add faces for the backside of the lithophane # Add faces for the backside of the lithophane
null_arr = np.copy(vertex_arr) null_arr = np.copy(vertex_arr)
@ -337,25 +371,25 @@ class app:
vertices.append([null_arr[i][j+1]]) vertices.append([null_arr[i][j+1]])
vertices.append([null_arr[i+1][j+1]]) vertices.append([null_arr[i+1][j+1]])
count = self.add_faces(faces, count) count = self.append_faces(faces, count)
# Horizontal side faces # Horizontal side faces
for j in range(self.height - 1): for i in range(self.height - 1):
vertices.append([vertex_arr[j][0]]) vertices.append([vertex_arr[i][0]])
vertices.append([vertex_arr[j+1][0]]) vertices.append([vertex_arr[i+1][0]])
vertices.append([null_arr[j][0]]) vertices.append([null_arr[i][0]])
vertices.append([null_arr[j+1][0]]) vertices.append([null_arr[i+1][0]])
count = self.add_faces(faces, count) count = self.append_faces(faces, count)
max = self.width - 1 max = self.width - 1
vertices.append([vertex_arr[j+1][max]]) vertices.append([vertex_arr[i+1][max]])
vertices.append([vertex_arr[j][max]]) vertices.append([vertex_arr[i][max]])
vertices.append([null_arr[j+1][max]]) vertices.append([null_arr[i+1][max]])
vertices.append([null_arr[j][max]]) vertices.append([null_arr[i][max]])
count = self.add_faces(faces, count) count = self.append_faces(faces, count)
# Vertical side faces # Vertical side faces
for j in range(self.width - 1): for j in range(self.width - 1):
@ -364,7 +398,7 @@ class app:
vertices.append([null_arr[0][j+1]]) vertices.append([null_arr[0][j+1]])
vertices.append([null_arr[0][j]]) vertices.append([null_arr[0][j]])
count = self.add_faces(faces, count) count = self.append_faces(faces, count)
max = self.height - 1 max = self.height - 1
@ -373,41 +407,60 @@ class app:
vertices.append([null_arr[max][j]]) vertices.append([null_arr[max][j]])
vertices.append([null_arr[max][j+1]]) vertices.append([null_arr[max][j+1]])
count = self.add_faces(faces, count) count = self.append_faces(faces, count)
# Convert to numpy arrays # Convert to numpy arrays
faces = np.array(faces) faces = np.array(faces)
vertices = np.array(vertices) vertices = np.array(vertices)
# Create the mesh - vertices.shape (no_faces, 3, 3) # Create the mesh - vertices.shape (no_faces, 3, 3)
self.stl_mesh_2d = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) self.stl_lithophane = mesh.Mesh(
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, face in enumerate(faces): for i, face in enumerate(faces):
for j in range(3): for j in range(3):
self.stl_mesh_2d.vectors[i][j] = vertices[face[j], :] self.stl_lithophane.vectors[i][j] = vertices[face[j], :]
def save_stl_2d(self): def make_stl_curved(self):
''' Save final mesh to stl file. '''Map fingerprint to finger model.
'''
self.stl_mesh_2d.save(self.stl_file)
def map_image_to_3d(self):
''' Map fingerprint to finger model.
''' '''
# TODO: if this is the same as 2D, move to heightmap to reduce duplicate code
x = np.linspace(0, self.width * 25.4 / self.dpi, self.width) x = np.linspace(0, self.width * 25.4 / self.dpi, self.width)
y = np.linspace(0, self.height * 25.4 / self.dpi, self.height) y = np.linspace(0, self.height * 25.4 / self.dpi, self.height)
z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7) self.meshgrid_3d = np.meshgrid(x, y)
# Method 1 - logspace and logarithmic curve
'''z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7)
z2 = np.logspace(10, 0, int(np.floor(self.width / 2)), base=0.7) z2 = np.logspace(10, 0, int(np.floor(self.width / 2)), base=0.7)
ztemp = 5*np.concatenate((z1, z2)) ztemp = 5*np.concatenate((z1, z2))
z = np.array([]) z = np.array([])
for i in range(self.height): for i in range(self.height):
z = np.concatenate((z, ztemp * pow(np.log(i+2), -1))) z = np.concatenate((z, ztemp + 25*(((i+50)/20)**(-1/2))))
z = z.reshape(-1, 1) z = z.reshape(-1, 1)
self.meshgrid_3d = np.meshgrid(x, y) self.img = (self.img / 10).reshape(-1, 1)
z += self.img'''
# Method 2 - 2 ellipses
z = np.array([])
for x in range(self.width):
z = np.append(z, np.sqrt(1 - (2*x/self.width - 1)**2)
* (self.curv_rate_x**2))
z = np.tile(z, (self.height, 1))
for y in range(self.height):
new = np.sqrt((1 - ((self.height - y)/self.height)**2)
* (self.curv_rate_y**2))
z[y] = z[y] + new
# TODO: clip responsivelly
bottom = z[0][math.floor(self.width/2)]
#top = self.curv_rate_x**2 + self.curv_rate_y
#np.clip(z, bottom, top, out=z)
z = z.reshape(-1, 1)
self.img = (self.img / 10).reshape(-1, 1)
z += self.img
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_3d))).T vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_3d))).T
vertex_arr = np.concatenate((vertex_arr, z), axis=1) vertex_arr = np.concatenate((vertex_arr, z), axis=1)
@ -416,41 +469,119 @@ class app:
count = 0 count = 0
vertices = [] vertices = []
faces = [] faces = []
min_point = 0
for i in range(self.height - 1):
if vertex_arr[i][0][2] <= bottom:
min_point = i
# Add faces for the backside of the lithophane
vec_side = (vertex_arr[self.height-1][0][2] -
vertex_arr[min_point][0][2]) / (self.height - min_point)
null_arr = np.copy(vertex_arr)
for i in range(self.height):
for j in range(self.width):
null_arr[i][j][2] = 0
#null_arr[i][j][2] = bottom + vec_side * i
# for smaller mesh
# Iterate over all vertices, create faces # Iterate over all vertices, create faces
for i in range(self.height - 1): for i in range(self.height - 1):
for j in range(self.width - 1): for j in range(self.width - 1):
if (vertex_arr[i][j][2] <= null_arr[i][j][2]
or vertex_arr[i+1][j][2] <= null_arr[i+1][j][2]
or vertex_arr[i][j+1][2] <= null_arr[i][j+1][2]
or vertex_arr[i+1][j+1][2] <= null_arr[i+1][j+1][2]):
continue
vertices.append([vertex_arr[i][j]]) vertices.append([vertex_arr[i][j]])
vertices.append([vertex_arr[i][j+1]]) vertices.append([vertex_arr[i][j+1]])
vertices.append([vertex_arr[i+1][j]]) vertices.append([vertex_arr[i+1][j]])
vertices.append([vertex_arr[i+1][j+1]]) vertices.append([vertex_arr[i+1][j+1]])
count = self.add_faces(faces, count) count = self.append_faces(faces, count)
# Rotated back side faces
for i in range(self.height - 1):
for j in range(self.width - 1):
if (vertex_arr[i][j][2] <= null_arr[i][j][2]):
continue
vertices.append([null_arr[i][j]])
vertices.append([null_arr[i+1][j]])
vertices.append([null_arr[i][j+1]])
vertices.append([null_arr[i+1][j+1]])
count = self.append_faces(faces, count)
# Horizontal side faces
for i in range(self.height - 1): # right
#if (vertex_arr[i][0][2] < null_arr[i][0][2]):
# continue
vertices.append([vertex_arr[i][0]])
vertices.append([vertex_arr[i+1][0]])
vertices.append([null_arr[i][0]])
vertices.append([null_arr[i+1][0]])
count = self.append_faces(faces, count)
for i in range(self.height - 1): # left
max = self.width - 1
#if (vertex_arr[i][max][2] < null_arr[i][max][2]):
# continue
vertices.append([vertex_arr[i+1][max]])
vertices.append([vertex_arr[i][max]])
vertices.append([null_arr[i+1][max]])
vertices.append([null_arr[i][max]])
count = self.append_faces(faces, count)
#self.finger_base = mesh.Mesh(np.zeros(, dtype=mesh.Mesh.dtype)) # Vertical side faces
for j in range(self.width - 1): # top
#if (vertex_arr[0][j][2] < null_arr[0][j][2]):
# continue
# linear projection vertices.append([vertex_arr[0][j+1]])
# extrude lines in 1 direction vertices.append([vertex_arr[0][j]])
# cylinder / circular projection vertices.append([null_arr[0][j+1]])
# extrude lines in direction of a suitable cylinder vertices.append([null_arr[0][j]])
# normal projection
# extrude lines in the direction of normals of given finger model count = self.append_faces(faces, count)
for j in range(self.width - 1): # bottom
max = self.height - 1
#if (vertex_arr[max][j][2] < null_arr[max][j][2]):
# continue
vertices.append([vertex_arr[max][j]])
vertices.append([vertex_arr[max][j+1]])
vertices.append([null_arr[max][j]])
vertices.append([null_arr[max][j+1]])
count = self.append_faces(faces, count)
# Convert to numpy arrays # Convert to numpy arrays
faces = np.array(faces) faces = np.array(faces)
vertices = np.array(vertices) vertices = np.array(vertices)
# Create the mesh - vertices.shape (no_faces, 3, 3) # Create the mesh - vertices.shape (no_faces, 3, 3)
self.mesh_finger = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) self.mesh_finger = mesh.Mesh(
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, face in enumerate(faces): for i, face in enumerate(faces):
for j in range(3): for j in range(3):
self.mesh_finger.vectors[i][j] = vertices[face[j], :] self.mesh_finger.vectors[i][j] = vertices[face[j], :]
def save_stl_3d(self): # print(self.mesh_finger.normals)
''' Save final mesh to stl file.
def save_stl(self):
'''Save final mesh to stl file.
''' '''
if self.mode == "3d":
self.mesh_finger.save(self.stl_file) self.mesh_finger.save(self.stl_file)
else:
self.stl_lithophane.save(self.stl_file)
# run the application
image = app() image = app()

Loading…
Cancel
Save