Added curved fingerprint model generation, refactored most of the code.
This commit is contained in:
@ -8,6 +8,7 @@ import numpy as np
|
||||
import cv2 as cv
|
||||
from skimage import filters as skiflt
|
||||
from skimage import restoration as skirest
|
||||
from scipy import signal as sig
|
||||
|
||||
|
||||
# Parent class for all the filters
|
||||
@ -33,8 +34,8 @@ class convolve(filter):
|
||||
kernel = np.array(params["kernel"]) if params["kernel"] else np.ones(
|
||||
(ksize, ksize), np.float32) / np.sqrt(ksize)
|
||||
|
||||
print("with params: ksize: " +
|
||||
str(ksize) + " kernel: \n" + str(kernel))
|
||||
#print("with params: ksize: " +
|
||||
# str(ksize) + " kernel: \n" + str(kernel))
|
||||
self.img = cv.filter2D(self.img, -1, kernel)
|
||||
|
||||
|
||||
@ -56,8 +57,8 @@ class blur(filter):
|
||||
anchor = (-1, -1)
|
||||
ksize = int(params["ksize"]) if params["ksize"] else 3
|
||||
|
||||
print("with params: ksize: " +
|
||||
str(ksize) + " anchor: " + str(anchor))
|
||||
#print("with params: ksize: " +
|
||||
# str(ksize) + " anchor: " + str(anchor))
|
||||
self.img = cv.blur(self.img, ksize=(ksize, ksize), anchor=anchor)
|
||||
|
||||
|
||||
@ -72,13 +73,15 @@ class gaussian(filter):
|
||||
sigmaX = float(params["sigmaX"]) if params["sigmaX"] else 0
|
||||
sigmaY = float(params["sigmaY"]) if params["sigmaY"] else 0
|
||||
|
||||
print("with params: ksize: " + str(ksize) +
|
||||
" sigmaX: " + str(sigmaX) + " sigmaY: " + str(sigmaY))
|
||||
|
||||
#print("with params: ksize: " + str(ksize) +
|
||||
# " sigmaX: " + str(sigmaX) + " sigmaY: " + str(sigmaY))
|
||||
self.img = cv.GaussianBlur(self.img, (ksize, ksize), sigmaX, sigmaY)
|
||||
|
||||
|
||||
class median(filter):
|
||||
''' Median blur filter from OpenCV.
|
||||
''' Median blur filter from scikit-image.
|
||||
Using this over opencv version as that one is limited to 5x5 kernel.
|
||||
'''
|
||||
def __init__(self, img):
|
||||
super().__init__(img)
|
||||
@ -86,8 +89,8 @@ class median(filter):
|
||||
def apply(self, params):
|
||||
ksize = int(params["ksize"]) if params["ksize"] else 3
|
||||
|
||||
print("with params: ksize: " + str(ksize))
|
||||
self.img = cv.medianBlur(np.float32(self.img), ksize)
|
||||
#print("with params: ksize: " + str(ksize))
|
||||
self.img = skiflt.median(self.img, footprint=np.ones((ksize, ksize)))
|
||||
|
||||
|
||||
class bilateral(filter):
|
||||
@ -102,8 +105,9 @@ class bilateral(filter):
|
||||
sigmaColor = int(params["sigmaColor"]) if params["sigmaColor"] else 75
|
||||
sigmaSpace = int(params["sigmaSpace"]) if params["sigmaSpace"] else 75
|
||||
|
||||
print("with params: d: " + str(d) + " sigmaColor: " +
|
||||
str(sigmaColor) + " sigmaSpace: " + str(sigmaSpace))
|
||||
#print("with params: d: " + str(d) + " sigmaColor: " +
|
||||
# str(sigmaColor) + " sigmaSpace: " + str(sigmaSpace))
|
||||
self.img = np.uint8(self.img)
|
||||
self.img = cv.bilateralFilter(self.img, d, sigmaColor, sigmaSpace)
|
||||
|
||||
|
||||
@ -119,8 +123,8 @@ class denoise(filter):
|
||||
sWS = int(params["searchWindowSize"]
|
||||
) if params["searchWindowSize"] else 21
|
||||
|
||||
print("with params: h: " + str(h) +
|
||||
" tWS: " + str(tWS) + " sWS: " + str(sWS))
|
||||
#print("with params: h: " + str(h) +
|
||||
# " tWS: " + str(tWS) + " sWS: " + str(sWS))
|
||||
self.img = np.uint8(self.img)
|
||||
self.img = cv.fastNlMeansDenoising(
|
||||
self.img, h, tWS, sWS)
|
||||
@ -146,9 +150,9 @@ class denoise_bilateral(filter):
|
||||
) if params["channelAxis"] else None
|
||||
iterations = int(params["iterations"]) if params["iterations"] else 1
|
||||
|
||||
print("with params: sigma_color: " + str(sigmaColor) +
|
||||
" sigma_spatial: " + str(sigmaSpace) + " channel_axis: " +
|
||||
str(channelAxis) + " iterations: " + str(iterations))
|
||||
#print("with params: sigma_color: " + str(sigmaColor) +
|
||||
# " sigma_spatial: " + str(sigmaSpace) + " channel_axis: " +
|
||||
# str(channelAxis) + " iterations: " + str(iterations))
|
||||
|
||||
for i in range(iterations):
|
||||
self.img = skirest.denoise_bilateral(
|
||||
@ -172,8 +176,8 @@ class denoise_tv_chambolle(filter):
|
||||
) if params["channelAxis"] else None
|
||||
iterations = int(params["iterations"]) if params["iterations"] else 1
|
||||
|
||||
print("with params: weight: " + str(weight) +
|
||||
" channel_axis: " + str(channelAxis) + " iterations: " + str(iterations))
|
||||
#print("with params: weight: " + str(weight) +
|
||||
# " channel_axis: " + str(channelAxis) + " iterations: " + str(iterations))
|
||||
for i in range(iterations):
|
||||
self.img = skirest.denoise_tv_chambolle(
|
||||
self.img, weight=weight, channel_axis=channelAxis)
|
||||
@ -190,7 +194,7 @@ class sharpen(filter):
|
||||
kernel = np.matrix(params["kernel"]) if params["kernel"] else np.array(
|
||||
[[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
|
||||
|
||||
print("with params: kernel: \n" + str(kernel))
|
||||
#print("with params: kernel: \n" + str(kernel))
|
||||
self.img = cv.filter2D(self.img, ddepth=-1, kernel=kernel)
|
||||
|
||||
|
||||
@ -211,8 +215,8 @@ class unsharp_mask(filter):
|
||||
blurred = cv.medianBlur(self.img, ksize)
|
||||
lap = cv.Laplacian(blurred, cv.CV_32F)
|
||||
|
||||
print("with params: strength: " +
|
||||
str(strength) + " ksize: " + str(ksize))
|
||||
#print("with params: strength: " +
|
||||
# str(strength) + " ksize: " + str(ksize))
|
||||
self.img = blurred - strength*lap
|
||||
|
||||
|
||||
@ -235,8 +239,8 @@ class unsharp_mask_scikit(filter):
|
||||
) if params["channelAxis"] else None
|
||||
|
||||
#self.img = cv.cvtColor(self.img, cv.COLOR_GRAY2RGB)
|
||||
print("with params: radius: " +
|
||||
str(radius) + " amount: " + str(amount))
|
||||
#print("with params: radius: " +
|
||||
# str(radius) + " amount: " + str(amount))
|
||||
self.img = skiflt.unsharp_mask(
|
||||
self.img, radius=radius, amount=amount, channel_axis=channelAxis)
|
||||
#self.img = cv.cvtColor(self.img, cv.COLOR_RGB2GRAY)
|
||||
@ -265,8 +269,39 @@ class morph(filter):
|
||||
else:
|
||||
anchor = (-1, -1)
|
||||
|
||||
print("with params: kernel: \n" + str(kernel) + " anchor: " +
|
||||
str(anchor) + " iterations: " + str(iterations) + " op: " + str(op))
|
||||
#print("with params: kernel: \n" + str(kernel) + " anchor: " +
|
||||
# str(anchor) + " iterations: " + str(iterations) + " op: " + str(op))
|
||||
self.img = cv.morphologyEx(
|
||||
np.uint8(self.img), op=op, kernel=kernel,
|
||||
anchor=anchor, iterations=iterations)
|
||||
|
||||
|
||||
class gabor(filter):
|
||||
''' Gabor filter from OpenCV.
|
||||
|
||||
Performs Gabor filtering on the image.
|
||||
'''
|
||||
|
||||
def __init__(self, img):
|
||||
super().__init__(img)
|
||||
|
||||
# TODO: not working properly
|
||||
def apply(self, params):
|
||||
ksize = int(params["ksize"]) if params["ksize"] else 31
|
||||
sigma = float(params["sigma"]) if params["sigma"] else 10.0
|
||||
theta = params["theta"] if params["theta"] else [0,np.pi/16,np.pi-np.pi/16]
|
||||
lambd = float(params["lambd"]) if params["lambd"] else 10.0
|
||||
gamma = float(params["gamma"]) if params["gamma"] else 0.02
|
||||
psi = float(params["psi"]) if params["psi"] else 0.0
|
||||
|
||||
filters = []
|
||||
|
||||
for i in range(len(theta)):
|
||||
g_kernel = cv.getGaborKernel(ksize=(ksize, ksize), sigma=sigma, theta=theta[i], lambd=lambd, gamma=gamma, psi=psi)
|
||||
g_kernel = g_kernel / 1.5 * g_kernel.sum()
|
||||
filters.append(g_kernel)
|
||||
|
||||
tmp = np.zeros_like(self.img)
|
||||
for i in range(len(filters)):
|
||||
tmp = cv.filter2D(self.img, -1, kernel=filters[i])
|
||||
self.img += np.maximum(self.img, tmp)
|
||||
|
545
src/main.py
545
src/main.py
@ -14,8 +14,8 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
#from PIL import Image
|
||||
import cv2 as cv
|
||||
|
||||
from stl import mesh
|
||||
import math
|
||||
|
||||
# Import custom image filter library
|
||||
import filters as flt
|
||||
@ -25,71 +25,191 @@ class app:
|
||||
def __init__(self):
|
||||
# Parse arguments from command line
|
||||
self.parse_arguments()
|
||||
self.params = {}
|
||||
|
||||
# List and dict for filters and corresponding parameters
|
||||
self.filters = []
|
||||
|
||||
# Parse configuration from json file
|
||||
self.params = {}
|
||||
|
||||
# Parse configuration from json config file
|
||||
if self.args.config:
|
||||
self.config_file = self.args.config[0]
|
||||
self.preset_name = self.args.config[1]
|
||||
self.config_file, self.preset_name = self.args.config
|
||||
self.config = json.load(open(self.config_file))
|
||||
self.parse_conf()
|
||||
|
||||
# If no config file given, expect filters in command line
|
||||
else:
|
||||
if not self.args.filters:
|
||||
print("No filters given, saving original image")
|
||||
|
||||
elif self.args.filters:
|
||||
print("No config file given, using command line arguments")
|
||||
i = 0
|
||||
|
||||
# Otherwise expect filters from command line
|
||||
for filter in self.args.filters:
|
||||
if filter.find('=') == -1:
|
||||
# if no '=' in filter, it is a new filter
|
||||
# if no '=' char in filter, it is a new filter name
|
||||
self.filters.append(filter)
|
||||
i += 1
|
||||
self.params[i] = {} # create empty dict for params
|
||||
self.params[i] = {} # create empty dict for params
|
||||
else:
|
||||
# else it's a parameter for current filter
|
||||
key, value = filter.split('=')
|
||||
self.params[i][key] = value
|
||||
self.parse_params(self.params[i])
|
||||
|
||||
if self.args.stl_file and len(self.args.stl_file) == 3:
|
||||
self.stl_file = self.args.stl_file[0]
|
||||
self.height_line = float(self.args.stl_file[1])
|
||||
self.height_base = float(self.args.stl_file[2])
|
||||
self.mode = "2d"
|
||||
|
||||
elif self.args.stl_file and len(self.args.stl_file) == 2:
|
||||
self.stl_file = self.args.stl_file[0]
|
||||
self.height_line = float(self.args.stl_file[1])
|
||||
self.mode = "3d"
|
||||
|
||||
else:
|
||||
print("No STL file given, saving image only")
|
||||
exit(1)
|
||||
print("No filters given, saving original image")
|
||||
|
||||
self.input_file = self.args.input_file
|
||||
self.output_file = self.args.output_file
|
||||
self.dpi = self.args.dpi
|
||||
self.mirror = True if self.args.mirror else False
|
||||
if exists(self.input_file):
|
||||
self.run()
|
||||
else:
|
||||
print("Input file does not exist", file=sys.stderr)
|
||||
exit(1)
|
||||
|
||||
def run(self):
|
||||
# read as numpy.array
|
||||
if exists(self.input_file):
|
||||
self.run_filtering()
|
||||
|
||||
else:
|
||||
|
||||
self.error_exit("Input file " + self.input_file +
|
||||
" does not exist")
|
||||
|
||||
if self.args.stl_file:
|
||||
|
||||
# Get stl filename
|
||||
self.stl_file = self.args.stl_file[0]
|
||||
|
||||
# Get mode and model parameters
|
||||
if self.args.planar:
|
||||
self.mode = "2d"
|
||||
|
||||
if len(self.args.stl_file) < 3:
|
||||
self.height_base = 10
|
||||
self.height_line = 2
|
||||
print(
|
||||
"Warning: Too few arguments, using default values (10mm base, 2mm lines)")
|
||||
else:
|
||||
self.height_line = float(self.args.stl_file[1])
|
||||
self.height_base = float(self.args.stl_file[2])
|
||||
print("Base height:", self.height_base,
|
||||
"mm, lines depth/height:", self.height_line, "mm")
|
||||
|
||||
else:
|
||||
self.mode = "3d"
|
||||
|
||||
if len(self.args.stl_file) < 4:
|
||||
self.height_line = 2
|
||||
self.curv_rate_x = 0.5
|
||||
self.curv_rate_y = 0.5
|
||||
print(
|
||||
"Warning: Too few arguments, using default values (2mm lines, curvature 0.5 on x, 0.5 on y)")
|
||||
else:
|
||||
self.height_line = float(self.args.stl_file[1])
|
||||
self.curv_rate_x = float(
|
||||
self.args.stl_file[2]) # finger depth
|
||||
self.curv_rate_y = float(
|
||||
self.args.stl_file[3]) # finger depth
|
||||
# self.curv_rate_x = float(self.args.stl_file[2]) # excentricity x
|
||||
# self.curv_rate_y = float(self.args.stl_file[3]) # excentricity y
|
||||
print("Line height:", self.height_line,"mm, x axis curvature:", self.curv_rate_x,
|
||||
", y axis curvature:", self.curv_rate_y)
|
||||
|
||||
print(self.mode, "mode selected")
|
||||
self.run_stl()
|
||||
|
||||
def parse_arguments(self):
|
||||
'''Parse arguments from command line using argparse library.
|
||||
'''
|
||||
|
||||
parser = ap.ArgumentParser(prog='main.py',
|
||||
description='Program for processing a 2D image into 3D fingerprint.',
|
||||
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] [-p] input_file output_file dpi ([-c config_file preset | --config config_file preset] | [filters ...]) [-s stl_file | --stl stl_file height_line height_base | --stl_file stl_file height_line curv_rate_x curv_rate_y]')
|
||||
|
||||
# positional arguments
|
||||
parser.add_argument("input_file", type=str, help="input file path")
|
||||
parser.add_argument("output_file", type=str, help="output file path")
|
||||
parser.add_argument("dpi", type=int, help="dpi of used scanner")
|
||||
|
||||
# boolean switch argument
|
||||
parser.add_argument('-m', '--mirror', type=bool, action=ap.BooleanOptionalAction,
|
||||
help="switch to mirror input image")
|
||||
|
||||
# another boolean switch argument, this time with value, name of the new file and dimensions
|
||||
parser.add_argument('-s', '--stl_file', type=str, nargs='*',
|
||||
help="create stl model from processed image")
|
||||
|
||||
# another boolean switch argument, this enables 2d mode
|
||||
parser.add_argument('-p', '--planar', type=bool, action=ap.BooleanOptionalAction,
|
||||
help="make stl shape planar instead of curved one")
|
||||
|
||||
# configuration file containing presets, preset name
|
||||
# pair argument - give both or none
|
||||
parser.add_argument('-c', '--config', nargs=2,
|
||||
help='pair: name of the config file with presets, name of the preset')
|
||||
|
||||
# array of unknown length, all filter names saved inside
|
||||
parser.add_argument('filters', type=str, nargs='*',
|
||||
help="list of filter names and their parameters in form [filter_name1 param1=value param2=value filter_name2 param1=value...]")
|
||||
|
||||
self.args = parser.parse_args()
|
||||
|
||||
def parse_params(self, params):
|
||||
'''Parse parameters of filters. Set to None if not given.
|
||||
They are later set to default values in the filter method apply.
|
||||
'''
|
||||
|
||||
# TODO: possibly too bloated, sending all possible params to each filter
|
||||
possible_params = {"h", "searchWindowSize", "templateWindowSize",
|
||||
"ksize", "kernel", "sigmaX", "sigmaY",
|
||||
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations",
|
||||
"op", "strength", "amount", "radius", "weight", "channelAxis",
|
||||
"theta", "sigma", "lambda", "gamma", "psi"}
|
||||
|
||||
for key in possible_params:
|
||||
if params.get(key) is None:
|
||||
params[key] = None
|
||||
else:
|
||||
params[key] = params[key]
|
||||
|
||||
def parse_conf(self):
|
||||
'''Parse configuration file if one was given.
|
||||
Store filters and their parameters.
|
||||
'''
|
||||
|
||||
# Find preset in config file
|
||||
if self.preset_name in self.config:
|
||||
filter_array = self.config[self.preset_name]
|
||||
# Iterate over filters in preset, store them and their parameters
|
||||
for i, filter in enumerate(range(len(filter_array)), start=1):
|
||||
self.filters.append(filter_array[filter]["name"])
|
||||
self.params[i] = {}
|
||||
for attribute, value in filter_array[filter].items():
|
||||
# Filter name isn't needed in here
|
||||
if attribute != "name":
|
||||
self.params[i][attribute] = value
|
||||
self.parse_params(self.params[i])
|
||||
print("Loaded preset: " + self.preset_name +
|
||||
" from file: " + self.config_file)
|
||||
else:
|
||||
self.error_exit("Preset not found")
|
||||
|
||||
def error_exit(self, message):
|
||||
'''Print error message and exit.
|
||||
'''
|
||||
|
||||
print("ERROR:", message, file=sys.stderr)
|
||||
exit(1)
|
||||
|
||||
#------------------------- FILTERING -------------------------#
|
||||
|
||||
def run_filtering(self):
|
||||
'''Load from input file, store as numpy.array,
|
||||
process image using filters and save to output file.
|
||||
'''
|
||||
|
||||
self.img = cv.imread(
|
||||
self.input_file, cv.IMREAD_GRAYSCALE).astype(np.uint8)
|
||||
|
||||
self.width = self.img.shape[1]
|
||||
self.height = self.img.shape[0]
|
||||
self.print_size(self.img.shape)
|
||||
fig = plt.figure(figsize=(self.width/self.dpi, self.height/self.dpi),
|
||||
frameon=False, dpi=self.dpi)
|
||||
self.height, self.width = self.img.shape
|
||||
print("Height: " + str(self.height) + " px and width: "
|
||||
+ str(self.width) + " px", file=sys.stderr)
|
||||
size = (self.width/self.dpi, self.height/self.dpi)
|
||||
fig = plt.figure(figsize=size, frameon=False, dpi=self.dpi)
|
||||
|
||||
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
||||
ax.set_axis_off()
|
||||
@ -99,191 +219,105 @@ class app:
|
||||
self.mirror_image()
|
||||
|
||||
# Apply all filters and save image
|
||||
self.apply_filter()
|
||||
self.apply_filters()
|
||||
self.save_image(fig, ax)
|
||||
plt.close()
|
||||
if self.args.stl_file:
|
||||
self.make_model()
|
||||
|
||||
def parse_params(self, params):
|
||||
''' Parse parameters of filters.
|
||||
Set to None if not given.
|
||||
They are later set in the filter method.
|
||||
'''
|
||||
|
||||
possible_params = {"h", "searchWindowSize", "templateWindowSize",
|
||||
"ksize", "kernel", "sigmaX", "sigmaY",
|
||||
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations",
|
||||
"op", "strength", "amount", "radius", "weight", "channelAxis"}
|
||||
for key in possible_params:
|
||||
if params.get(key) is None:
|
||||
params[key] = None
|
||||
else:
|
||||
params[key] = params[key]
|
||||
|
||||
def parse_conf(self):
|
||||
''' Parse configuration file if one was given and store filters with their parameters
|
||||
'''
|
||||
|
||||
if self.preset_name in self.config:
|
||||
filter_array = self.config[self.preset_name]
|
||||
for i, filter in enumerate(range(len(filter_array)), start=1):
|
||||
self.filters.append(filter_array[filter]["name"])
|
||||
self.params[i] = {}
|
||||
for attribute, value in filter_array[filter].items():
|
||||
if attribute != "name":
|
||||
self.params[i][attribute] = value
|
||||
self.parse_params(self.params[i])
|
||||
print("Loaded preset: " + self.preset_name +
|
||||
" from file: " + self.config_file)
|
||||
else:
|
||||
print("Preset not found", file=sys.stderr)
|
||||
|
||||
def parse_arguments(self):
|
||||
''' Parse arguments from command line
|
||||
'''
|
||||
|
||||
parser = ap.ArgumentParser(prog='main.py',
|
||||
description='Program for processing a 2D image into 3D fingerprint.',
|
||||
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] input_file output_file dpi \
|
||||
([-c config_file preset | --config config_file preset] | [filters ...]) \
|
||||
[-s stl_file | --stl_file stl_file depth_total depth_line]')
|
||||
|
||||
# positional arguments
|
||||
parser.add_argument("input_file", type=str, help="location with input file")
|
||||
parser.add_argument("output_file", type=str, help="output file location")
|
||||
parser.add_argument("dpi", type=int, help="scanner dpi")
|
||||
|
||||
# boolean switch argument
|
||||
parser.add_argument('-m', "--mirror", help="mirror input image", type=bool, action=ap.BooleanOptionalAction)
|
||||
|
||||
# another boolean switch argument, this time with value, name of the new file and dimensions
|
||||
parser.add_argument('-s', '--stl_file', type=str, nargs='*',
|
||||
help="make planar model from processed image", required=False)
|
||||
|
||||
# file with configuration containing presets, new preset name
|
||||
# pair argument - give both or none
|
||||
parser.add_argument('-c', '--config', nargs=2,
|
||||
help='pair: name of the config file with presets, name of the preset')
|
||||
|
||||
# array of unknown length, all filter names saved inside
|
||||
parser.add_argument('filters', type=str, nargs='*',
|
||||
help="list of filter names and their parameters in form [filter_name1 param1=value1 param2=value2 filter_name2 param1=value1...]")
|
||||
|
||||
self.args = parser.parse_args()
|
||||
|
||||
def filter_factory(self, filter_name):
|
||||
''' Selects filter method of filters library.
|
||||
'''
|
||||
|
||||
print("Applying " + filter_name + " filter ", end='')
|
||||
return getattr(flt, filter_name)
|
||||
|
||||
def mirror_image(self):
|
||||
''' Mirror image when mirroring is needed,
|
||||
should be used only if we want a positive model
|
||||
'''
|
||||
'''Mirror image using opencv, should be used if we want a positive model.
|
||||
'''
|
||||
|
||||
print("Mirroring image", file=sys.stderr)
|
||||
self.img = cv.flip(self.img, 1) # 1 for vertical mirror
|
||||
|
||||
def apply_filter(self):
|
||||
''' Apply filters to image.
|
||||
|
||||
Apply the filters one by one, if none were given, just save original image output.
|
||||
def apply_filters(self):
|
||||
'''Apply filters to image one by one.
|
||||
In case none were given, pass and save original image to the output file.
|
||||
'''
|
||||
|
||||
if len(self.filters) == 0:
|
||||
# No filter given, just save the image
|
||||
pass
|
||||
else:
|
||||
# Apply all filters
|
||||
for i, filter_name in enumerate(self.filters):
|
||||
filter = self.filter_factory(filter_name)
|
||||
# Get filter class from filter.py, use the apply method
|
||||
filter = getattr(flt, filter_name)
|
||||
filter.apply(self, self.params[i+1])
|
||||
|
||||
def save_image(self, fig, ax):
|
||||
''' Save processed image.
|
||||
Colormap set to grayscale to avoid color mismatch.
|
||||
'''Save processed image to the output file.
|
||||
'''
|
||||
|
||||
print("Saving image to ", self.output_file, file=sys.stderr)
|
||||
print("Saving image to", self.output_file, file=sys.stderr)
|
||||
# Colormap must be set to grayscale to avoid color mismatch.
|
||||
ax.imshow(self.img, cmap="gray")
|
||||
fig.savefig(fname=self.output_file, dpi='figure')
|
||||
fig.savefig(fname=self.output_file, dpi=self.dpi)
|
||||
|
||||
def print_size(self, size):
|
||||
print("Image of height: " + str(size[0]) +
|
||||
" px and width: " + str(size[1]) + " px", file=sys.stderr)
|
||||
#------------------------- STL GENERATION -------------------------#
|
||||
|
||||
def make_model(self):
|
||||
'''After processing image, make a lithophane from it.
|
||||
def run_stl(self):
|
||||
'''Make heightmap, create mesh and save as stl file.
|
||||
'''
|
||||
|
||||
print("Making heighthmap", file=sys.stderr)
|
||||
self.prepare_heightmap()
|
||||
|
||||
if self.mode == "2d":
|
||||
print("Converting to stl format", file=sys.stderr)
|
||||
self.make_stl_planar()
|
||||
plt.show()
|
||||
print(f"Saving lithophane to ", self.stl_file, file=sys.stderr)
|
||||
self.save_stl_2d()
|
||||
|
||||
elif self.mode == "3d":
|
||||
self.map_image_to_3d()
|
||||
plt.show()
|
||||
self.save_stl_3d()
|
||||
self.make_stl_curved()
|
||||
|
||||
else:
|
||||
print("Mode not supported", file=sys.stderr)
|
||||
exit(1)
|
||||
self.error_exit("Mode not supported")
|
||||
|
||||
plt.show()
|
||||
print(f"Saving model to ", self.stl_file, file=sys.stderr)
|
||||
self.save_stl()
|
||||
|
||||
def prepare_heightmap(self):
|
||||
''' Create numpy meshgrid.
|
||||
Modify image values to get usable depth values.
|
||||
'''Modify image values to get usable height/depth values.
|
||||
Check validity of dimension parameters.
|
||||
'''
|
||||
|
||||
# TODO: redo, too complicated, add extra params, redo checks
|
||||
|
||||
if self.img.dtype == np.float32 or self.img.dtype == np.float64:
|
||||
print("Converting to uint8", file=sys.stderr)
|
||||
self.img = self.img * 255
|
||||
self.img = self.img.astype(np.uint8)
|
||||
print("Creating mesh", file=sys.stderr)
|
||||
|
||||
if self.mode == "2d":
|
||||
if self.height_base <= 0:
|
||||
print("Depth of plate height must be positive", file=sys.stderr)
|
||||
exit(1)
|
||||
self.error_exit("Depth of plate height must be positive")
|
||||
|
||||
if self.height_line + self.height_base <= 0:
|
||||
print("Line depth must be less than plate thickness", file=sys.stderr)
|
||||
exit(1)
|
||||
|
||||
print("Base height:", self.height_base,
|
||||
"mm, lines depth/height:", self.height_line, "mm")
|
||||
self.error_exit("Line depth must be less than plate thickness")
|
||||
|
||||
# Transform image values to get a heightmap
|
||||
if self.height_line < 0:
|
||||
self.img = (self.height_base + (1 - self.img/255)
|
||||
* self.height_line)
|
||||
else:
|
||||
self.img = (self.height_base + (1 - self.img/255)
|
||||
* self.height_line)
|
||||
self.img = (self.height_base + (1 - self.img/255)
|
||||
* self.height_line)
|
||||
|
||||
if self.mode == "3d":
|
||||
#TODO add some checks and print info
|
||||
pass
|
||||
# TODO check curvature values and print info
|
||||
# TODO: copy pasta code, remove
|
||||
# Transform image values to get a heightmap
|
||||
self.img = (1 - self.img/255) * self.height_line
|
||||
|
||||
def add_faces(self, faces, c):
|
||||
def append_faces(self, faces, c):
|
||||
# Function to add faces to the list
|
||||
faces.append([c, c + 1, c + 2])
|
||||
faces.append([c + 1, c + 3, c + 2])
|
||||
return c + 4
|
||||
|
||||
def make_stl_planar(self):
|
||||
''' Create mesh from meshgrid.
|
||||
'''Create mesh from meshgrid.
|
||||
Create vertices from meshgrid, add depth values from image.
|
||||
Create faces from vertices. Add vectors and faces to the model.
|
||||
|
||||
From wikipedia.org/wiki/STL_(file_format):
|
||||
ascii stl format consists of repeating structures:
|
||||
|
||||
|
||||
facet normal ni nj nk # normal vector
|
||||
outer loop
|
||||
vertex v1x v1y v1z # vertex 1
|
||||
@ -299,7 +333,7 @@ class app:
|
||||
|
||||
self.meshgrid_2d = np.meshgrid(x, y)
|
||||
|
||||
# Add the image matrix to the 2D meshgrid and create 1D array of 3D points
|
||||
# Add the image matrix to the 2D meshgrid and create 1D array of 3D pointsd
|
||||
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_2d))).T
|
||||
z = (self.img / 10).reshape(-1, 1)
|
||||
vertex_arr = np.concatenate((vertex_arr, z), axis=1)
|
||||
@ -320,42 +354,42 @@ class app:
|
||||
vertices.append([vertex_arr[i+1][j]])
|
||||
vertices.append([vertex_arr[i+1][j+1]])
|
||||
|
||||
count = self.add_faces(faces, count)
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
# Add faces for the backside of the lithophane
|
||||
null_arr = np.copy(vertex_arr)
|
||||
for i in range(self.height):
|
||||
for j in range(self.width):
|
||||
null_arr[i][j][2] = 0
|
||||
|
||||
|
||||
# Back side faces
|
||||
for i in range(self.height - 1):
|
||||
for j in range(self.width - 1):
|
||||
for j in range(self.width - 1):
|
||||
|
||||
vertices.append([null_arr[i][j]])
|
||||
vertices.append([null_arr[i+1][j]])
|
||||
vertices.append([null_arr[i][j+1]])
|
||||
vertices.append([null_arr[i+1][j+1]])
|
||||
|
||||
count = self.add_faces(faces, count)
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
# Horizontal side faces
|
||||
for j in range(self.height - 1):
|
||||
vertices.append([vertex_arr[j][0]])
|
||||
vertices.append([vertex_arr[j+1][0]])
|
||||
vertices.append([null_arr[j][0]])
|
||||
vertices.append([null_arr[j+1][0]])
|
||||
for i in range(self.height - 1):
|
||||
vertices.append([vertex_arr[i][0]])
|
||||
vertices.append([vertex_arr[i+1][0]])
|
||||
vertices.append([null_arr[i][0]])
|
||||
vertices.append([null_arr[i+1][0]])
|
||||
|
||||
count = self.add_faces(faces, count)
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
max = self.width - 1
|
||||
|
||||
vertices.append([vertex_arr[j+1][max]])
|
||||
vertices.append([vertex_arr[j][max]])
|
||||
vertices.append([null_arr[j+1][max]])
|
||||
vertices.append([null_arr[j][max]])
|
||||
vertices.append([vertex_arr[i+1][max]])
|
||||
vertices.append([vertex_arr[i][max]])
|
||||
vertices.append([null_arr[i+1][max]])
|
||||
vertices.append([null_arr[i][max]])
|
||||
|
||||
count = self.add_faces(faces, count)
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
# Vertical side faces
|
||||
for j in range(self.width - 1):
|
||||
@ -364,7 +398,7 @@ class app:
|
||||
vertices.append([null_arr[0][j+1]])
|
||||
vertices.append([null_arr[0][j]])
|
||||
|
||||
count = self.add_faces(faces, count)
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
max = self.height - 1
|
||||
|
||||
@ -373,41 +407,60 @@ class app:
|
||||
vertices.append([null_arr[max][j]])
|
||||
vertices.append([null_arr[max][j+1]])
|
||||
|
||||
count = self.add_faces(faces, count)
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
# Convert to numpy arrays
|
||||
faces = np.array(faces)
|
||||
vertices = np.array(vertices)
|
||||
|
||||
# Create the mesh - vertices.shape (no_faces, 3, 3)
|
||||
self.stl_mesh_2d = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
|
||||
self.stl_lithophane = mesh.Mesh(
|
||||
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
|
||||
for i, face in enumerate(faces):
|
||||
for j in range(3):
|
||||
self.stl_mesh_2d.vectors[i][j] = vertices[face[j], :]
|
||||
self.stl_lithophane.vectors[i][j] = vertices[face[j], :]
|
||||
|
||||
def save_stl_2d(self):
|
||||
''' Save final mesh to stl file.
|
||||
'''
|
||||
|
||||
self.stl_mesh_2d.save(self.stl_file)
|
||||
|
||||
def map_image_to_3d(self):
|
||||
''' Map fingerprint to finger model.
|
||||
def make_stl_curved(self):
|
||||
'''Map fingerprint to finger model.
|
||||
'''
|
||||
|
||||
# TODO: if this is the same as 2D, move to heightmap to reduce duplicate code
|
||||
x = np.linspace(0, self.width * 25.4 / self.dpi, self.width)
|
||||
y = np.linspace(0, self.height * 25.4 / self.dpi, self.height)
|
||||
|
||||
z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7)
|
||||
self.meshgrid_3d = np.meshgrid(x, y)
|
||||
|
||||
# Method 1 - logspace and logarithmic curve
|
||||
'''z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7)
|
||||
z2 = np.logspace(10, 0, int(np.floor(self.width / 2)), base=0.7)
|
||||
ztemp = 5*np.concatenate((z1, z2))
|
||||
|
||||
z = np.array([])
|
||||
for i in range(self.height):
|
||||
z = np.concatenate((z, ztemp * pow(np.log(i+2), -1)))
|
||||
z = np.concatenate((z, ztemp + 25*(((i+50)/20)**(-1/2))))
|
||||
z = z.reshape(-1, 1)
|
||||
|
||||
self.meshgrid_3d = np.meshgrid(x, y)
|
||||
self.img = (self.img / 10).reshape(-1, 1)
|
||||
z += self.img'''
|
||||
|
||||
# Method 2 - 2 ellipses
|
||||
z = np.array([])
|
||||
for x in range(self.width):
|
||||
z = np.append(z, np.sqrt(1 - (2*x/self.width - 1)**2)
|
||||
* (self.curv_rate_x**2))
|
||||
z = np.tile(z, (self.height, 1))
|
||||
for y in range(self.height):
|
||||
new = np.sqrt((1 - ((self.height - y)/self.height)**2)
|
||||
* (self.curv_rate_y**2))
|
||||
z[y] = z[y] + new
|
||||
|
||||
# TODO: clip responsivelly
|
||||
bottom = z[0][math.floor(self.width/2)]
|
||||
#top = self.curv_rate_x**2 + self.curv_rate_y
|
||||
#np.clip(z, bottom, top, out=z)
|
||||
z = z.reshape(-1, 1)
|
||||
self.img = (self.img / 10).reshape(-1, 1)
|
||||
z += self.img
|
||||
|
||||
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_3d))).T
|
||||
vertex_arr = np.concatenate((vertex_arr, z), axis=1)
|
||||
@ -416,41 +469,119 @@ class app:
|
||||
count = 0
|
||||
vertices = []
|
||||
faces = []
|
||||
min_point = 0
|
||||
for i in range(self.height - 1):
|
||||
if vertex_arr[i][0][2] <= bottom:
|
||||
min_point = i
|
||||
|
||||
# Add faces for the backside of the lithophane
|
||||
vec_side = (vertex_arr[self.height-1][0][2] -
|
||||
vertex_arr[min_point][0][2]) / (self.height - min_point)
|
||||
null_arr = np.copy(vertex_arr)
|
||||
for i in range(self.height):
|
||||
for j in range(self.width):
|
||||
null_arr[i][j][2] = 0
|
||||
#null_arr[i][j][2] = bottom + vec_side * i
|
||||
# for smaller mesh
|
||||
|
||||
# Iterate over all vertices, create faces
|
||||
for i in range(self.height - 1):
|
||||
for j in range(self.width - 1):
|
||||
|
||||
if (vertex_arr[i][j][2] <= null_arr[i][j][2]
|
||||
or vertex_arr[i+1][j][2] <= null_arr[i+1][j][2]
|
||||
or vertex_arr[i][j+1][2] <= null_arr[i][j+1][2]
|
||||
or vertex_arr[i+1][j+1][2] <= null_arr[i+1][j+1][2]):
|
||||
continue
|
||||
vertices.append([vertex_arr[i][j]])
|
||||
vertices.append([vertex_arr[i][j+1]])
|
||||
vertices.append([vertex_arr[i+1][j]])
|
||||
vertices.append([vertex_arr[i+1][j+1]])
|
||||
|
||||
count = self.add_faces(faces, count)
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
#self.finger_base = mesh.Mesh(np.zeros(, dtype=mesh.Mesh.dtype))
|
||||
# Rotated back side faces
|
||||
for i in range(self.height - 1):
|
||||
for j in range(self.width - 1):
|
||||
if (vertex_arr[i][j][2] <= null_arr[i][j][2]):
|
||||
continue
|
||||
|
||||
# linear projection
|
||||
# extrude lines in 1 direction
|
||||
# cylinder / circular projection
|
||||
# extrude lines in direction of a suitable cylinder
|
||||
# normal projection
|
||||
# extrude lines in the direction of normals of given finger model
|
||||
vertices.append([null_arr[i][j]])
|
||||
vertices.append([null_arr[i+1][j]])
|
||||
vertices.append([null_arr[i][j+1]])
|
||||
vertices.append([null_arr[i+1][j+1]])
|
||||
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
# Horizontal side faces
|
||||
for i in range(self.height - 1): # right
|
||||
#if (vertex_arr[i][0][2] < null_arr[i][0][2]):
|
||||
# continue
|
||||
|
||||
vertices.append([vertex_arr[i][0]])
|
||||
vertices.append([vertex_arr[i+1][0]])
|
||||
vertices.append([null_arr[i][0]])
|
||||
vertices.append([null_arr[i+1][0]])
|
||||
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
for i in range(self.height - 1): # left
|
||||
max = self.width - 1
|
||||
#if (vertex_arr[i][max][2] < null_arr[i][max][2]):
|
||||
# continue
|
||||
|
||||
vertices.append([vertex_arr[i+1][max]])
|
||||
vertices.append([vertex_arr[i][max]])
|
||||
vertices.append([null_arr[i+1][max]])
|
||||
vertices.append([null_arr[i][max]])
|
||||
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
# Vertical side faces
|
||||
for j in range(self.width - 1): # top
|
||||
#if (vertex_arr[0][j][2] < null_arr[0][j][2]):
|
||||
# continue
|
||||
|
||||
vertices.append([vertex_arr[0][j+1]])
|
||||
vertices.append([vertex_arr[0][j]])
|
||||
vertices.append([null_arr[0][j+1]])
|
||||
vertices.append([null_arr[0][j]])
|
||||
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
for j in range(self.width - 1): # bottom
|
||||
max = self.height - 1
|
||||
#if (vertex_arr[max][j][2] < null_arr[max][j][2]):
|
||||
# continue
|
||||
|
||||
vertices.append([vertex_arr[max][j]])
|
||||
vertices.append([vertex_arr[max][j+1]])
|
||||
vertices.append([null_arr[max][j]])
|
||||
vertices.append([null_arr[max][j+1]])
|
||||
|
||||
count = self.append_faces(faces, count)
|
||||
|
||||
# Convert to numpy arrays
|
||||
faces = np.array(faces)
|
||||
vertices = np.array(vertices)
|
||||
|
||||
# Create the mesh - vertices.shape (no_faces, 3, 3)
|
||||
self.mesh_finger = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
|
||||
self.mesh_finger = mesh.Mesh(
|
||||
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
|
||||
for i, face in enumerate(faces):
|
||||
for j in range(3):
|
||||
self.mesh_finger.vectors[i][j] = vertices[face[j], :]
|
||||
|
||||
def save_stl_3d(self):
|
||||
''' Save final mesh to stl file.
|
||||
# print(self.mesh_finger.normals)
|
||||
|
||||
def save_stl(self):
|
||||
'''Save final mesh to stl file.
|
||||
'''
|
||||
|
||||
self.mesh_finger.save(self.stl_file)
|
||||
if self.mode == "3d":
|
||||
self.mesh_finger.save(self.stl_file)
|
||||
else:
|
||||
self.stl_lithophane.save(self.stl_file)
|
||||
|
||||
|
||||
# run the application
|
||||
image = app()
|
||||
|
Reference in New Issue
Block a user