Added curved fingerprint model generation, refactored most of the code.

This commit is contained in:
Rostislav Lán
2023-02-23 12:58:24 +01:00
parent c5d412e462
commit 390232c4f0
2 changed files with 398 additions and 232 deletions

View File

@ -8,6 +8,7 @@ import numpy as np
import cv2 as cv
from skimage import filters as skiflt
from skimage import restoration as skirest
from scipy import signal as sig
# Parent class for all the filters
@ -33,8 +34,8 @@ class convolve(filter):
kernel = np.array(params["kernel"]) if params["kernel"] else np.ones(
(ksize, ksize), np.float32) / np.sqrt(ksize)
print("with params: ksize: " +
str(ksize) + " kernel: \n" + str(kernel))
#print("with params: ksize: " +
# str(ksize) + " kernel: \n" + str(kernel))
self.img = cv.filter2D(self.img, -1, kernel)
@ -56,8 +57,8 @@ class blur(filter):
anchor = (-1, -1)
ksize = int(params["ksize"]) if params["ksize"] else 3
print("with params: ksize: " +
str(ksize) + " anchor: " + str(anchor))
#print("with params: ksize: " +
# str(ksize) + " anchor: " + str(anchor))
self.img = cv.blur(self.img, ksize=(ksize, ksize), anchor=anchor)
@ -72,13 +73,15 @@ class gaussian(filter):
sigmaX = float(params["sigmaX"]) if params["sigmaX"] else 0
sigmaY = float(params["sigmaY"]) if params["sigmaY"] else 0
print("with params: ksize: " + str(ksize) +
" sigmaX: " + str(sigmaX) + " sigmaY: " + str(sigmaY))
#print("with params: ksize: " + str(ksize) +
# " sigmaX: " + str(sigmaX) + " sigmaY: " + str(sigmaY))
self.img = cv.GaussianBlur(self.img, (ksize, ksize), sigmaX, sigmaY)
class median(filter):
''' Median blur filter from OpenCV.
''' Median blur filter from scikit-image.
Using this over opencv version as that one is limited to 5x5 kernel.
'''
def __init__(self, img):
super().__init__(img)
@ -86,8 +89,8 @@ class median(filter):
def apply(self, params):
ksize = int(params["ksize"]) if params["ksize"] else 3
print("with params: ksize: " + str(ksize))
self.img = cv.medianBlur(np.float32(self.img), ksize)
#print("with params: ksize: " + str(ksize))
self.img = skiflt.median(self.img, footprint=np.ones((ksize, ksize)))
class bilateral(filter):
@ -102,8 +105,9 @@ class bilateral(filter):
sigmaColor = int(params["sigmaColor"]) if params["sigmaColor"] else 75
sigmaSpace = int(params["sigmaSpace"]) if params["sigmaSpace"] else 75
print("with params: d: " + str(d) + " sigmaColor: " +
str(sigmaColor) + " sigmaSpace: " + str(sigmaSpace))
#print("with params: d: " + str(d) + " sigmaColor: " +
# str(sigmaColor) + " sigmaSpace: " + str(sigmaSpace))
self.img = np.uint8(self.img)
self.img = cv.bilateralFilter(self.img, d, sigmaColor, sigmaSpace)
@ -119,8 +123,8 @@ class denoise(filter):
sWS = int(params["searchWindowSize"]
) if params["searchWindowSize"] else 21
print("with params: h: " + str(h) +
" tWS: " + str(tWS) + " sWS: " + str(sWS))
#print("with params: h: " + str(h) +
# " tWS: " + str(tWS) + " sWS: " + str(sWS))
self.img = np.uint8(self.img)
self.img = cv.fastNlMeansDenoising(
self.img, h, tWS, sWS)
@ -146,9 +150,9 @@ class denoise_bilateral(filter):
) if params["channelAxis"] else None
iterations = int(params["iterations"]) if params["iterations"] else 1
print("with params: sigma_color: " + str(sigmaColor) +
" sigma_spatial: " + str(sigmaSpace) + " channel_axis: " +
str(channelAxis) + " iterations: " + str(iterations))
#print("with params: sigma_color: " + str(sigmaColor) +
# " sigma_spatial: " + str(sigmaSpace) + " channel_axis: " +
# str(channelAxis) + " iterations: " + str(iterations))
for i in range(iterations):
self.img = skirest.denoise_bilateral(
@ -172,8 +176,8 @@ class denoise_tv_chambolle(filter):
) if params["channelAxis"] else None
iterations = int(params["iterations"]) if params["iterations"] else 1
print("with params: weight: " + str(weight) +
" channel_axis: " + str(channelAxis) + " iterations: " + str(iterations))
#print("with params: weight: " + str(weight) +
# " channel_axis: " + str(channelAxis) + " iterations: " + str(iterations))
for i in range(iterations):
self.img = skirest.denoise_tv_chambolle(
self.img, weight=weight, channel_axis=channelAxis)
@ -190,7 +194,7 @@ class sharpen(filter):
kernel = np.matrix(params["kernel"]) if params["kernel"] else np.array(
[[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
print("with params: kernel: \n" + str(kernel))
#print("with params: kernel: \n" + str(kernel))
self.img = cv.filter2D(self.img, ddepth=-1, kernel=kernel)
@ -211,8 +215,8 @@ class unsharp_mask(filter):
blurred = cv.medianBlur(self.img, ksize)
lap = cv.Laplacian(blurred, cv.CV_32F)
print("with params: strength: " +
str(strength) + " ksize: " + str(ksize))
#print("with params: strength: " +
# str(strength) + " ksize: " + str(ksize))
self.img = blurred - strength*lap
@ -235,8 +239,8 @@ class unsharp_mask_scikit(filter):
) if params["channelAxis"] else None
#self.img = cv.cvtColor(self.img, cv.COLOR_GRAY2RGB)
print("with params: radius: " +
str(radius) + " amount: " + str(amount))
#print("with params: radius: " +
# str(radius) + " amount: " + str(amount))
self.img = skiflt.unsharp_mask(
self.img, radius=radius, amount=amount, channel_axis=channelAxis)
#self.img = cv.cvtColor(self.img, cv.COLOR_RGB2GRAY)
@ -265,8 +269,39 @@ class morph(filter):
else:
anchor = (-1, -1)
print("with params: kernel: \n" + str(kernel) + " anchor: " +
str(anchor) + " iterations: " + str(iterations) + " op: " + str(op))
#print("with params: kernel: \n" + str(kernel) + " anchor: " +
# str(anchor) + " iterations: " + str(iterations) + " op: " + str(op))
self.img = cv.morphologyEx(
np.uint8(self.img), op=op, kernel=kernel,
anchor=anchor, iterations=iterations)
class gabor(filter):
''' Gabor filter from OpenCV.
Performs Gabor filtering on the image.
'''
def __init__(self, img):
super().__init__(img)
# TODO: not working properly
def apply(self, params):
ksize = int(params["ksize"]) if params["ksize"] else 31
sigma = float(params["sigma"]) if params["sigma"] else 10.0
theta = params["theta"] if params["theta"] else [0,np.pi/16,np.pi-np.pi/16]
lambd = float(params["lambd"]) if params["lambd"] else 10.0
gamma = float(params["gamma"]) if params["gamma"] else 0.02
psi = float(params["psi"]) if params["psi"] else 0.0
filters = []
for i in range(len(theta)):
g_kernel = cv.getGaborKernel(ksize=(ksize, ksize), sigma=sigma, theta=theta[i], lambd=lambd, gamma=gamma, psi=psi)
g_kernel = g_kernel / 1.5 * g_kernel.sum()
filters.append(g_kernel)
tmp = np.zeros_like(self.img)
for i in range(len(filters)):
tmp = cv.filter2D(self.img, -1, kernel=filters[i])
self.img += np.maximum(self.img, tmp)

View File

@ -14,8 +14,8 @@ import numpy as np
import matplotlib.pyplot as plt
#from PIL import Image
import cv2 as cv
from stl import mesh
import math
# Import custom image filter library
import filters as flt
@ -25,71 +25,191 @@ class app:
def __init__(self):
# Parse arguments from command line
self.parse_arguments()
self.params = {}
# List and dict for filters and corresponding parameters
self.filters = []
# Parse configuration from json file
self.params = {}
# Parse configuration from json config file
if self.args.config:
self.config_file = self.args.config[0]
self.preset_name = self.args.config[1]
self.config_file, self.preset_name = self.args.config
self.config = json.load(open(self.config_file))
self.parse_conf()
# If no config file given, expect filters in command line
else:
if not self.args.filters:
print("No filters given, saving original image")
elif self.args.filters:
print("No config file given, using command line arguments")
i = 0
# Otherwise expect filters from command line
for filter in self.args.filters:
if filter.find('=') == -1:
# if no '=' in filter, it is a new filter
# if no '=' char in filter, it is a new filter name
self.filters.append(filter)
i += 1
self.params[i] = {} # create empty dict for params
self.params[i] = {} # create empty dict for params
else:
# else it's a parameter for current filter
key, value = filter.split('=')
self.params[i][key] = value
self.parse_params(self.params[i])
if self.args.stl_file and len(self.args.stl_file) == 3:
self.stl_file = self.args.stl_file[0]
self.height_line = float(self.args.stl_file[1])
self.height_base = float(self.args.stl_file[2])
self.mode = "2d"
elif self.args.stl_file and len(self.args.stl_file) == 2:
self.stl_file = self.args.stl_file[0]
self.height_line = float(self.args.stl_file[1])
self.mode = "3d"
else:
print("No STL file given, saving image only")
exit(1)
print("No filters given, saving original image")
self.input_file = self.args.input_file
self.output_file = self.args.output_file
self.dpi = self.args.dpi
self.mirror = True if self.args.mirror else False
if exists(self.input_file):
self.run()
else:
print("Input file does not exist", file=sys.stderr)
exit(1)
def run(self):
# read as numpy.array
if exists(self.input_file):
self.run_filtering()
else:
self.error_exit("Input file " + self.input_file +
" does not exist")
if self.args.stl_file:
# Get stl filename
self.stl_file = self.args.stl_file[0]
# Get mode and model parameters
if self.args.planar:
self.mode = "2d"
if len(self.args.stl_file) < 3:
self.height_base = 10
self.height_line = 2
print(
"Warning: Too few arguments, using default values (10mm base, 2mm lines)")
else:
self.height_line = float(self.args.stl_file[1])
self.height_base = float(self.args.stl_file[2])
print("Base height:", self.height_base,
"mm, lines depth/height:", self.height_line, "mm")
else:
self.mode = "3d"
if len(self.args.stl_file) < 4:
self.height_line = 2
self.curv_rate_x = 0.5
self.curv_rate_y = 0.5
print(
"Warning: Too few arguments, using default values (2mm lines, curvature 0.5 on x, 0.5 on y)")
else:
self.height_line = float(self.args.stl_file[1])
self.curv_rate_x = float(
self.args.stl_file[2]) # finger depth
self.curv_rate_y = float(
self.args.stl_file[3]) # finger depth
# self.curv_rate_x = float(self.args.stl_file[2]) # excentricity x
# self.curv_rate_y = float(self.args.stl_file[3]) # excentricity y
print("Line height:", self.height_line,"mm, x axis curvature:", self.curv_rate_x,
", y axis curvature:", self.curv_rate_y)
print(self.mode, "mode selected")
self.run_stl()
def parse_arguments(self):
'''Parse arguments from command line using argparse library.
'''
parser = ap.ArgumentParser(prog='main.py',
description='Program for processing a 2D image into 3D fingerprint.',
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] [-p] input_file output_file dpi ([-c config_file preset | --config config_file preset] | [filters ...]) [-s stl_file | --stl stl_file height_line height_base | --stl_file stl_file height_line curv_rate_x curv_rate_y]')
# positional arguments
parser.add_argument("input_file", type=str, help="input file path")
parser.add_argument("output_file", type=str, help="output file path")
parser.add_argument("dpi", type=int, help="dpi of used scanner")
# boolean switch argument
parser.add_argument('-m', '--mirror', type=bool, action=ap.BooleanOptionalAction,
help="switch to mirror input image")
# another boolean switch argument, this time with value, name of the new file and dimensions
parser.add_argument('-s', '--stl_file', type=str, nargs='*',
help="create stl model from processed image")
# another boolean switch argument, this enables 2d mode
parser.add_argument('-p', '--planar', type=bool, action=ap.BooleanOptionalAction,
help="make stl shape planar instead of curved one")
# configuration file containing presets, preset name
# pair argument - give both or none
parser.add_argument('-c', '--config', nargs=2,
help='pair: name of the config file with presets, name of the preset')
# array of unknown length, all filter names saved inside
parser.add_argument('filters', type=str, nargs='*',
help="list of filter names and their parameters in form [filter_name1 param1=value param2=value filter_name2 param1=value...]")
self.args = parser.parse_args()
def parse_params(self, params):
'''Parse parameters of filters. Set to None if not given.
They are later set to default values in the filter method apply.
'''
# TODO: possibly too bloated, sending all possible params to each filter
possible_params = {"h", "searchWindowSize", "templateWindowSize",
"ksize", "kernel", "sigmaX", "sigmaY",
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations",
"op", "strength", "amount", "radius", "weight", "channelAxis",
"theta", "sigma", "lambda", "gamma", "psi"}
for key in possible_params:
if params.get(key) is None:
params[key] = None
else:
params[key] = params[key]
def parse_conf(self):
'''Parse configuration file if one was given.
Store filters and their parameters.
'''
# Find preset in config file
if self.preset_name in self.config:
filter_array = self.config[self.preset_name]
# Iterate over filters in preset, store them and their parameters
for i, filter in enumerate(range(len(filter_array)), start=1):
self.filters.append(filter_array[filter]["name"])
self.params[i] = {}
for attribute, value in filter_array[filter].items():
# Filter name isn't needed in here
if attribute != "name":
self.params[i][attribute] = value
self.parse_params(self.params[i])
print("Loaded preset: " + self.preset_name +
" from file: " + self.config_file)
else:
self.error_exit("Preset not found")
def error_exit(self, message):
'''Print error message and exit.
'''
print("ERROR:", message, file=sys.stderr)
exit(1)
#------------------------- FILTERING -------------------------#
def run_filtering(self):
'''Load from input file, store as numpy.array,
process image using filters and save to output file.
'''
self.img = cv.imread(
self.input_file, cv.IMREAD_GRAYSCALE).astype(np.uint8)
self.width = self.img.shape[1]
self.height = self.img.shape[0]
self.print_size(self.img.shape)
fig = plt.figure(figsize=(self.width/self.dpi, self.height/self.dpi),
frameon=False, dpi=self.dpi)
self.height, self.width = self.img.shape
print("Height: " + str(self.height) + " px and width: "
+ str(self.width) + " px", file=sys.stderr)
size = (self.width/self.dpi, self.height/self.dpi)
fig = plt.figure(figsize=size, frameon=False, dpi=self.dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
@ -99,191 +219,105 @@ class app:
self.mirror_image()
# Apply all filters and save image
self.apply_filter()
self.apply_filters()
self.save_image(fig, ax)
plt.close()
if self.args.stl_file:
self.make_model()
def parse_params(self, params):
''' Parse parameters of filters.
Set to None if not given.
They are later set in the filter method.
'''
possible_params = {"h", "searchWindowSize", "templateWindowSize",
"ksize", "kernel", "sigmaX", "sigmaY",
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations",
"op", "strength", "amount", "radius", "weight", "channelAxis"}
for key in possible_params:
if params.get(key) is None:
params[key] = None
else:
params[key] = params[key]
def parse_conf(self):
''' Parse configuration file if one was given and store filters with their parameters
'''
if self.preset_name in self.config:
filter_array = self.config[self.preset_name]
for i, filter in enumerate(range(len(filter_array)), start=1):
self.filters.append(filter_array[filter]["name"])
self.params[i] = {}
for attribute, value in filter_array[filter].items():
if attribute != "name":
self.params[i][attribute] = value
self.parse_params(self.params[i])
print("Loaded preset: " + self.preset_name +
" from file: " + self.config_file)
else:
print("Preset not found", file=sys.stderr)
def parse_arguments(self):
''' Parse arguments from command line
'''
parser = ap.ArgumentParser(prog='main.py',
description='Program for processing a 2D image into 3D fingerprint.',
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] input_file output_file dpi \
([-c config_file preset | --config config_file preset] | [filters ...]) \
[-s stl_file | --stl_file stl_file depth_total depth_line]')
# positional arguments
parser.add_argument("input_file", type=str, help="location with input file")
parser.add_argument("output_file", type=str, help="output file location")
parser.add_argument("dpi", type=int, help="scanner dpi")
# boolean switch argument
parser.add_argument('-m', "--mirror", help="mirror input image", type=bool, action=ap.BooleanOptionalAction)
# another boolean switch argument, this time with value, name of the new file and dimensions
parser.add_argument('-s', '--stl_file', type=str, nargs='*',
help="make planar model from processed image", required=False)
# file with configuration containing presets, new preset name
# pair argument - give both or none
parser.add_argument('-c', '--config', nargs=2,
help='pair: name of the config file with presets, name of the preset')
# array of unknown length, all filter names saved inside
parser.add_argument('filters', type=str, nargs='*',
help="list of filter names and their parameters in form [filter_name1 param1=value1 param2=value2 filter_name2 param1=value1...]")
self.args = parser.parse_args()
def filter_factory(self, filter_name):
''' Selects filter method of filters library.
'''
print("Applying " + filter_name + " filter ", end='')
return getattr(flt, filter_name)
def mirror_image(self):
''' Mirror image when mirroring is needed,
should be used only if we want a positive model
'''
'''Mirror image using opencv, should be used if we want a positive model.
'''
print("Mirroring image", file=sys.stderr)
self.img = cv.flip(self.img, 1) # 1 for vertical mirror
def apply_filter(self):
''' Apply filters to image.
Apply the filters one by one, if none were given, just save original image output.
def apply_filters(self):
'''Apply filters to image one by one.
In case none were given, pass and save original image to the output file.
'''
if len(self.filters) == 0:
# No filter given, just save the image
pass
else:
# Apply all filters
for i, filter_name in enumerate(self.filters):
filter = self.filter_factory(filter_name)
# Get filter class from filter.py, use the apply method
filter = getattr(flt, filter_name)
filter.apply(self, self.params[i+1])
def save_image(self, fig, ax):
''' Save processed image.
Colormap set to grayscale to avoid color mismatch.
'''Save processed image to the output file.
'''
print("Saving image to ", self.output_file, file=sys.stderr)
print("Saving image to", self.output_file, file=sys.stderr)
# Colormap must be set to grayscale to avoid color mismatch.
ax.imshow(self.img, cmap="gray")
fig.savefig(fname=self.output_file, dpi='figure')
fig.savefig(fname=self.output_file, dpi=self.dpi)
def print_size(self, size):
print("Image of height: " + str(size[0]) +
" px and width: " + str(size[1]) + " px", file=sys.stderr)
#------------------------- STL GENERATION -------------------------#
def make_model(self):
'''After processing image, make a lithophane from it.
def run_stl(self):
'''Make heightmap, create mesh and save as stl file.
'''
print("Making heighthmap", file=sys.stderr)
self.prepare_heightmap()
if self.mode == "2d":
print("Converting to stl format", file=sys.stderr)
self.make_stl_planar()
plt.show()
print(f"Saving lithophane to ", self.stl_file, file=sys.stderr)
self.save_stl_2d()
elif self.mode == "3d":
self.map_image_to_3d()
plt.show()
self.save_stl_3d()
self.make_stl_curved()
else:
print("Mode not supported", file=sys.stderr)
exit(1)
self.error_exit("Mode not supported")
plt.show()
print(f"Saving model to ", self.stl_file, file=sys.stderr)
self.save_stl()
def prepare_heightmap(self):
''' Create numpy meshgrid.
Modify image values to get usable depth values.
'''Modify image values to get usable height/depth values.
Check validity of dimension parameters.
'''
# TODO: redo, too complicated, add extra params, redo checks
if self.img.dtype == np.float32 or self.img.dtype == np.float64:
print("Converting to uint8", file=sys.stderr)
self.img = self.img * 255
self.img = self.img.astype(np.uint8)
print("Creating mesh", file=sys.stderr)
if self.mode == "2d":
if self.height_base <= 0:
print("Depth of plate height must be positive", file=sys.stderr)
exit(1)
self.error_exit("Depth of plate height must be positive")
if self.height_line + self.height_base <= 0:
print("Line depth must be less than plate thickness", file=sys.stderr)
exit(1)
print("Base height:", self.height_base,
"mm, lines depth/height:", self.height_line, "mm")
self.error_exit("Line depth must be less than plate thickness")
# Transform image values to get a heightmap
if self.height_line < 0:
self.img = (self.height_base + (1 - self.img/255)
* self.height_line)
else:
self.img = (self.height_base + (1 - self.img/255)
* self.height_line)
self.img = (self.height_base + (1 - self.img/255)
* self.height_line)
if self.mode == "3d":
#TODO add some checks and print info
pass
# TODO check curvature values and print info
# TODO: copy pasta code, remove
# Transform image values to get a heightmap
self.img = (1 - self.img/255) * self.height_line
def add_faces(self, faces, c):
def append_faces(self, faces, c):
# Function to add faces to the list
faces.append([c, c + 1, c + 2])
faces.append([c + 1, c + 3, c + 2])
return c + 4
def make_stl_planar(self):
''' Create mesh from meshgrid.
'''Create mesh from meshgrid.
Create vertices from meshgrid, add depth values from image.
Create faces from vertices. Add vectors and faces to the model.
From wikipedia.org/wiki/STL_(file_format):
ascii stl format consists of repeating structures:
facet normal ni nj nk # normal vector
outer loop
vertex v1x v1y v1z # vertex 1
@ -299,7 +333,7 @@ class app:
self.meshgrid_2d = np.meshgrid(x, y)
# Add the image matrix to the 2D meshgrid and create 1D array of 3D points
# Add the image matrix to the 2D meshgrid and create 1D array of 3D pointsd
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_2d))).T
z = (self.img / 10).reshape(-1, 1)
vertex_arr = np.concatenate((vertex_arr, z), axis=1)
@ -320,42 +354,42 @@ class app:
vertices.append([vertex_arr[i+1][j]])
vertices.append([vertex_arr[i+1][j+1]])
count = self.add_faces(faces, count)
count = self.append_faces(faces, count)
# Add faces for the backside of the lithophane
null_arr = np.copy(vertex_arr)
for i in range(self.height):
for j in range(self.width):
null_arr[i][j][2] = 0
# Back side faces
for i in range(self.height - 1):
for j in range(self.width - 1):
for j in range(self.width - 1):
vertices.append([null_arr[i][j]])
vertices.append([null_arr[i+1][j]])
vertices.append([null_arr[i][j+1]])
vertices.append([null_arr[i+1][j+1]])
count = self.add_faces(faces, count)
count = self.append_faces(faces, count)
# Horizontal side faces
for j in range(self.height - 1):
vertices.append([vertex_arr[j][0]])
vertices.append([vertex_arr[j+1][0]])
vertices.append([null_arr[j][0]])
vertices.append([null_arr[j+1][0]])
for i in range(self.height - 1):
vertices.append([vertex_arr[i][0]])
vertices.append([vertex_arr[i+1][0]])
vertices.append([null_arr[i][0]])
vertices.append([null_arr[i+1][0]])
count = self.add_faces(faces, count)
count = self.append_faces(faces, count)
max = self.width - 1
vertices.append([vertex_arr[j+1][max]])
vertices.append([vertex_arr[j][max]])
vertices.append([null_arr[j+1][max]])
vertices.append([null_arr[j][max]])
vertices.append([vertex_arr[i+1][max]])
vertices.append([vertex_arr[i][max]])
vertices.append([null_arr[i+1][max]])
vertices.append([null_arr[i][max]])
count = self.add_faces(faces, count)
count = self.append_faces(faces, count)
# Vertical side faces
for j in range(self.width - 1):
@ -364,7 +398,7 @@ class app:
vertices.append([null_arr[0][j+1]])
vertices.append([null_arr[0][j]])
count = self.add_faces(faces, count)
count = self.append_faces(faces, count)
max = self.height - 1
@ -373,41 +407,60 @@ class app:
vertices.append([null_arr[max][j]])
vertices.append([null_arr[max][j+1]])
count = self.add_faces(faces, count)
count = self.append_faces(faces, count)
# Convert to numpy arrays
faces = np.array(faces)
vertices = np.array(vertices)
# Create the mesh - vertices.shape (no_faces, 3, 3)
self.stl_mesh_2d = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
self.stl_lithophane = mesh.Mesh(
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, face in enumerate(faces):
for j in range(3):
self.stl_mesh_2d.vectors[i][j] = vertices[face[j], :]
self.stl_lithophane.vectors[i][j] = vertices[face[j], :]
def save_stl_2d(self):
''' Save final mesh to stl file.
'''
self.stl_mesh_2d.save(self.stl_file)
def map_image_to_3d(self):
''' Map fingerprint to finger model.
def make_stl_curved(self):
'''Map fingerprint to finger model.
'''
# TODO: if this is the same as 2D, move to heightmap to reduce duplicate code
x = np.linspace(0, self.width * 25.4 / self.dpi, self.width)
y = np.linspace(0, self.height * 25.4 / self.dpi, self.height)
z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7)
self.meshgrid_3d = np.meshgrid(x, y)
# Method 1 - logspace and logarithmic curve
'''z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7)
z2 = np.logspace(10, 0, int(np.floor(self.width / 2)), base=0.7)
ztemp = 5*np.concatenate((z1, z2))
z = np.array([])
for i in range(self.height):
z = np.concatenate((z, ztemp * pow(np.log(i+2), -1)))
z = np.concatenate((z, ztemp + 25*(((i+50)/20)**(-1/2))))
z = z.reshape(-1, 1)
self.meshgrid_3d = np.meshgrid(x, y)
self.img = (self.img / 10).reshape(-1, 1)
z += self.img'''
# Method 2 - 2 ellipses
z = np.array([])
for x in range(self.width):
z = np.append(z, np.sqrt(1 - (2*x/self.width - 1)**2)
* (self.curv_rate_x**2))
z = np.tile(z, (self.height, 1))
for y in range(self.height):
new = np.sqrt((1 - ((self.height - y)/self.height)**2)
* (self.curv_rate_y**2))
z[y] = z[y] + new
# TODO: clip responsivelly
bottom = z[0][math.floor(self.width/2)]
#top = self.curv_rate_x**2 + self.curv_rate_y
#np.clip(z, bottom, top, out=z)
z = z.reshape(-1, 1)
self.img = (self.img / 10).reshape(-1, 1)
z += self.img
vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_3d))).T
vertex_arr = np.concatenate((vertex_arr, z), axis=1)
@ -416,41 +469,119 @@ class app:
count = 0
vertices = []
faces = []
min_point = 0
for i in range(self.height - 1):
if vertex_arr[i][0][2] <= bottom:
min_point = i
# Add faces for the backside of the lithophane
vec_side = (vertex_arr[self.height-1][0][2] -
vertex_arr[min_point][0][2]) / (self.height - min_point)
null_arr = np.copy(vertex_arr)
for i in range(self.height):
for j in range(self.width):
null_arr[i][j][2] = 0
#null_arr[i][j][2] = bottom + vec_side * i
# for smaller mesh
# Iterate over all vertices, create faces
for i in range(self.height - 1):
for j in range(self.width - 1):
if (vertex_arr[i][j][2] <= null_arr[i][j][2]
or vertex_arr[i+1][j][2] <= null_arr[i+1][j][2]
or vertex_arr[i][j+1][2] <= null_arr[i][j+1][2]
or vertex_arr[i+1][j+1][2] <= null_arr[i+1][j+1][2]):
continue
vertices.append([vertex_arr[i][j]])
vertices.append([vertex_arr[i][j+1]])
vertices.append([vertex_arr[i+1][j]])
vertices.append([vertex_arr[i+1][j+1]])
count = self.add_faces(faces, count)
count = self.append_faces(faces, count)
#self.finger_base = mesh.Mesh(np.zeros(, dtype=mesh.Mesh.dtype))
# Rotated back side faces
for i in range(self.height - 1):
for j in range(self.width - 1):
if (vertex_arr[i][j][2] <= null_arr[i][j][2]):
continue
# linear projection
# extrude lines in 1 direction
# cylinder / circular projection
# extrude lines in direction of a suitable cylinder
# normal projection
# extrude lines in the direction of normals of given finger model
vertices.append([null_arr[i][j]])
vertices.append([null_arr[i+1][j]])
vertices.append([null_arr[i][j+1]])
vertices.append([null_arr[i+1][j+1]])
count = self.append_faces(faces, count)
# Horizontal side faces
for i in range(self.height - 1): # right
#if (vertex_arr[i][0][2] < null_arr[i][0][2]):
# continue
vertices.append([vertex_arr[i][0]])
vertices.append([vertex_arr[i+1][0]])
vertices.append([null_arr[i][0]])
vertices.append([null_arr[i+1][0]])
count = self.append_faces(faces, count)
for i in range(self.height - 1): # left
max = self.width - 1
#if (vertex_arr[i][max][2] < null_arr[i][max][2]):
# continue
vertices.append([vertex_arr[i+1][max]])
vertices.append([vertex_arr[i][max]])
vertices.append([null_arr[i+1][max]])
vertices.append([null_arr[i][max]])
count = self.append_faces(faces, count)
# Vertical side faces
for j in range(self.width - 1): # top
#if (vertex_arr[0][j][2] < null_arr[0][j][2]):
# continue
vertices.append([vertex_arr[0][j+1]])
vertices.append([vertex_arr[0][j]])
vertices.append([null_arr[0][j+1]])
vertices.append([null_arr[0][j]])
count = self.append_faces(faces, count)
for j in range(self.width - 1): # bottom
max = self.height - 1
#if (vertex_arr[max][j][2] < null_arr[max][j][2]):
# continue
vertices.append([vertex_arr[max][j]])
vertices.append([vertex_arr[max][j+1]])
vertices.append([null_arr[max][j]])
vertices.append([null_arr[max][j+1]])
count = self.append_faces(faces, count)
# Convert to numpy arrays
faces = np.array(faces)
vertices = np.array(vertices)
# Create the mesh - vertices.shape (no_faces, 3, 3)
self.mesh_finger = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
self.mesh_finger = mesh.Mesh(
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, face in enumerate(faces):
for j in range(3):
self.mesh_finger.vectors[i][j] = vertices[face[j], :]
def save_stl_3d(self):
''' Save final mesh to stl file.
# print(self.mesh_finger.normals)
def save_stl(self):
'''Save final mesh to stl file.
'''
self.mesh_finger.save(self.stl_file)
if self.mode == "3d":
self.mesh_finger.save(self.stl_file)
else:
self.stl_lithophane.save(self.stl_file)
# run the application
image = app()