From 390232c4f0bcb6ec5a209e9fc92ecd6894ad818b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Rostislav=20L=C3=A1n?= Date: Thu, 23 Feb 2023 12:58:24 +0100 Subject: [PATCH] Added curved fingerprint model generation, refactored most of the code. --- src/filters.py | 85 ++++++--- src/main.py | 485 +++++++++++++++++++++++++++++++------------------ 2 files changed, 368 insertions(+), 202 deletions(-) diff --git a/src/filters.py b/src/filters.py index d241f8c..e226822 100644 --- a/src/filters.py +++ b/src/filters.py @@ -8,6 +8,7 @@ import numpy as np import cv2 as cv from skimage import filters as skiflt from skimage import restoration as skirest +from scipy import signal as sig # Parent class for all the filters @@ -33,8 +34,8 @@ class convolve(filter): kernel = np.array(params["kernel"]) if params["kernel"] else np.ones( (ksize, ksize), np.float32) / np.sqrt(ksize) - print("with params: ksize: " + - str(ksize) + " kernel: \n" + str(kernel)) + #print("with params: ksize: " + + # str(ksize) + " kernel: \n" + str(kernel)) self.img = cv.filter2D(self.img, -1, kernel) @@ -56,8 +57,8 @@ class blur(filter): anchor = (-1, -1) ksize = int(params["ksize"]) if params["ksize"] else 3 - print("with params: ksize: " + - str(ksize) + " anchor: " + str(anchor)) + #print("with params: ksize: " + + # str(ksize) + " anchor: " + str(anchor)) self.img = cv.blur(self.img, ksize=(ksize, ksize), anchor=anchor) @@ -72,13 +73,15 @@ class gaussian(filter): sigmaX = float(params["sigmaX"]) if params["sigmaX"] else 0 sigmaY = float(params["sigmaY"]) if params["sigmaY"] else 0 - print("with params: ksize: " + str(ksize) + - " sigmaX: " + str(sigmaX) + " sigmaY: " + str(sigmaY)) + + #print("with params: ksize: " + str(ksize) + + # " sigmaX: " + str(sigmaX) + " sigmaY: " + str(sigmaY)) self.img = cv.GaussianBlur(self.img, (ksize, ksize), sigmaX, sigmaY) class median(filter): - ''' Median blur filter from OpenCV. + ''' Median blur filter from scikit-image. + Using this over opencv version as that one is limited to 5x5 kernel. ''' def __init__(self, img): super().__init__(img) @@ -86,8 +89,8 @@ class median(filter): def apply(self, params): ksize = int(params["ksize"]) if params["ksize"] else 3 - print("with params: ksize: " + str(ksize)) - self.img = cv.medianBlur(np.float32(self.img), ksize) + #print("with params: ksize: " + str(ksize)) + self.img = skiflt.median(self.img, footprint=np.ones((ksize, ksize))) class bilateral(filter): @@ -102,8 +105,9 @@ class bilateral(filter): sigmaColor = int(params["sigmaColor"]) if params["sigmaColor"] else 75 sigmaSpace = int(params["sigmaSpace"]) if params["sigmaSpace"] else 75 - print("with params: d: " + str(d) + " sigmaColor: " + - str(sigmaColor) + " sigmaSpace: " + str(sigmaSpace)) + #print("with params: d: " + str(d) + " sigmaColor: " + + # str(sigmaColor) + " sigmaSpace: " + str(sigmaSpace)) + self.img = np.uint8(self.img) self.img = cv.bilateralFilter(self.img, d, sigmaColor, sigmaSpace) @@ -119,8 +123,8 @@ class denoise(filter): sWS = int(params["searchWindowSize"] ) if params["searchWindowSize"] else 21 - print("with params: h: " + str(h) + - " tWS: " + str(tWS) + " sWS: " + str(sWS)) + #print("with params: h: " + str(h) + + # " tWS: " + str(tWS) + " sWS: " + str(sWS)) self.img = np.uint8(self.img) self.img = cv.fastNlMeansDenoising( self.img, h, tWS, sWS) @@ -146,9 +150,9 @@ class denoise_bilateral(filter): ) if params["channelAxis"] else None iterations = int(params["iterations"]) if params["iterations"] else 1 - print("with params: sigma_color: " + str(sigmaColor) + - " sigma_spatial: " + str(sigmaSpace) + " channel_axis: " + - str(channelAxis) + " iterations: " + str(iterations)) + #print("with params: sigma_color: " + str(sigmaColor) + + # " sigma_spatial: " + str(sigmaSpace) + " channel_axis: " + + # str(channelAxis) + " iterations: " + str(iterations)) for i in range(iterations): self.img = skirest.denoise_bilateral( @@ -172,8 +176,8 @@ class denoise_tv_chambolle(filter): ) if params["channelAxis"] else None iterations = int(params["iterations"]) if params["iterations"] else 1 - print("with params: weight: " + str(weight) + - " channel_axis: " + str(channelAxis) + " iterations: " + str(iterations)) + #print("with params: weight: " + str(weight) + + # " channel_axis: " + str(channelAxis) + " iterations: " + str(iterations)) for i in range(iterations): self.img = skirest.denoise_tv_chambolle( self.img, weight=weight, channel_axis=channelAxis) @@ -190,7 +194,7 @@ class sharpen(filter): kernel = np.matrix(params["kernel"]) if params["kernel"] else np.array( [[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) - print("with params: kernel: \n" + str(kernel)) + #print("with params: kernel: \n" + str(kernel)) self.img = cv.filter2D(self.img, ddepth=-1, kernel=kernel) @@ -211,8 +215,8 @@ class unsharp_mask(filter): blurred = cv.medianBlur(self.img, ksize) lap = cv.Laplacian(blurred, cv.CV_32F) - print("with params: strength: " + - str(strength) + " ksize: " + str(ksize)) + #print("with params: strength: " + + # str(strength) + " ksize: " + str(ksize)) self.img = blurred - strength*lap @@ -235,8 +239,8 @@ class unsharp_mask_scikit(filter): ) if params["channelAxis"] else None #self.img = cv.cvtColor(self.img, cv.COLOR_GRAY2RGB) - print("with params: radius: " + - str(radius) + " amount: " + str(amount)) + #print("with params: radius: " + + # str(radius) + " amount: " + str(amount)) self.img = skiflt.unsharp_mask( self.img, radius=radius, amount=amount, channel_axis=channelAxis) #self.img = cv.cvtColor(self.img, cv.COLOR_RGB2GRAY) @@ -265,8 +269,39 @@ class morph(filter): else: anchor = (-1, -1) - print("with params: kernel: \n" + str(kernel) + " anchor: " + - str(anchor) + " iterations: " + str(iterations) + " op: " + str(op)) + #print("with params: kernel: \n" + str(kernel) + " anchor: " + + # str(anchor) + " iterations: " + str(iterations) + " op: " + str(op)) self.img = cv.morphologyEx( np.uint8(self.img), op=op, kernel=kernel, anchor=anchor, iterations=iterations) + + +class gabor(filter): + ''' Gabor filter from OpenCV. + + Performs Gabor filtering on the image. + ''' + + def __init__(self, img): + super().__init__(img) + + # TODO: not working properly + def apply(self, params): + ksize = int(params["ksize"]) if params["ksize"] else 31 + sigma = float(params["sigma"]) if params["sigma"] else 10.0 + theta = params["theta"] if params["theta"] else [0,np.pi/16,np.pi-np.pi/16] + lambd = float(params["lambd"]) if params["lambd"] else 10.0 + gamma = float(params["gamma"]) if params["gamma"] else 0.02 + psi = float(params["psi"]) if params["psi"] else 0.0 + + filters = [] + + for i in range(len(theta)): + g_kernel = cv.getGaborKernel(ksize=(ksize, ksize), sigma=sigma, theta=theta[i], lambd=lambd, gamma=gamma, psi=psi) + g_kernel = g_kernel / 1.5 * g_kernel.sum() + filters.append(g_kernel) + + tmp = np.zeros_like(self.img) + for i in range(len(filters)): + tmp = cv.filter2D(self.img, -1, kernel=filters[i]) + self.img += np.maximum(self.img, tmp) diff --git a/src/main.py b/src/main.py index 623794b..2dd9429 100644 --- a/src/main.py +++ b/src/main.py @@ -14,8 +14,8 @@ import numpy as np import matplotlib.pyplot as plt #from PIL import Image import cv2 as cv - from stl import mesh +import math # Import custom image filter library import filters as flt @@ -25,96 +25,141 @@ class app: def __init__(self): # Parse arguments from command line self.parse_arguments() - self.params = {} + + # List and dict for filters and corresponding parameters self.filters = [] - - # Parse configuration from json file + self.params = {} + + # Parse configuration from json config file if self.args.config: - self.config_file = self.args.config[0] - self.preset_name = self.args.config[1] + self.config_file, self.preset_name = self.args.config self.config = json.load(open(self.config_file)) self.parse_conf() - # If no config file given, expect filters in command line - else: - if not self.args.filters: - print("No filters given, saving original image") - + elif self.args.filters: print("No config file given, using command line arguments") i = 0 + # Otherwise expect filters from command line for filter in self.args.filters: if filter.find('=') == -1: - # if no '=' in filter, it is a new filter + # if no '=' char in filter, it is a new filter name self.filters.append(filter) i += 1 - self.params[i] = {} # create empty dict for params + self.params[i] = {} # create empty dict for params else: # else it's a parameter for current filter key, value = filter.split('=') self.params[i][key] = value self.parse_params(self.params[i]) - if self.args.stl_file and len(self.args.stl_file) == 3: - self.stl_file = self.args.stl_file[0] - self.height_line = float(self.args.stl_file[1]) - self.height_base = float(self.args.stl_file[2]) - self.mode = "2d" - - elif self.args.stl_file and len(self.args.stl_file) == 2: - self.stl_file = self.args.stl_file[0] - self.height_line = float(self.args.stl_file[1]) - self.mode = "3d" - else: - print("No STL file given, saving image only") - exit(1) + print("No filters given, saving original image") self.input_file = self.args.input_file self.output_file = self.args.output_file self.dpi = self.args.dpi self.mirror = True if self.args.mirror else False + if exists(self.input_file): - self.run() + self.run_filtering() + else: - print("Input file does not exist", file=sys.stderr) - exit(1) - def run(self): - # read as numpy.array - self.img = cv.imread( - self.input_file, cv.IMREAD_GRAYSCALE).astype(np.uint8) + self.error_exit("Input file " + self.input_file + + " does not exist") - self.width = self.img.shape[1] - self.height = self.img.shape[0] - self.print_size(self.img.shape) - fig = plt.figure(figsize=(self.width/self.dpi, self.height/self.dpi), - frameon=False, dpi=self.dpi) + if self.args.stl_file: - ax = plt.Axes(fig, [0., 0., 1., 1.]) - ax.set_axis_off() - fig.add_axes(ax) + # Get stl filename + self.stl_file = self.args.stl_file[0] - if self.mirror is True: - self.mirror_image() + # Get mode and model parameters + if self.args.planar: + self.mode = "2d" - # Apply all filters and save image - self.apply_filter() - self.save_image(fig, ax) - plt.close() - if self.args.stl_file: - self.make_model() + if len(self.args.stl_file) < 3: + self.height_base = 10 + self.height_line = 2 + print( + "Warning: Too few arguments, using default values (10mm base, 2mm lines)") + else: + self.height_line = float(self.args.stl_file[1]) + self.height_base = float(self.args.stl_file[2]) + print("Base height:", self.height_base, + "mm, lines depth/height:", self.height_line, "mm") + + else: + self.mode = "3d" + + if len(self.args.stl_file) < 4: + self.height_line = 2 + self.curv_rate_x = 0.5 + self.curv_rate_y = 0.5 + print( + "Warning: Too few arguments, using default values (2mm lines, curvature 0.5 on x, 0.5 on y)") + else: + self.height_line = float(self.args.stl_file[1]) + self.curv_rate_x = float( + self.args.stl_file[2]) # finger depth + self.curv_rate_y = float( + self.args.stl_file[3]) # finger depth + # self.curv_rate_x = float(self.args.stl_file[2]) # excentricity x + # self.curv_rate_y = float(self.args.stl_file[3]) # excentricity y + print("Line height:", self.height_line,"mm, x axis curvature:", self.curv_rate_x, + ", y axis curvature:", self.curv_rate_y) + + print(self.mode, "mode selected") + self.run_stl() + + def parse_arguments(self): + '''Parse arguments from command line using argparse library. + ''' + + parser = ap.ArgumentParser(prog='main.py', + description='Program for processing a 2D image into 3D fingerprint.', + usage='%(prog)s [-h] [-m | --mirror | --no-mirror] [-p] input_file output_file dpi ([-c config_file preset | --config config_file preset] | [filters ...]) [-s stl_file | --stl stl_file height_line height_base | --stl_file stl_file height_line curv_rate_x curv_rate_y]') + + # positional arguments + parser.add_argument("input_file", type=str, help="input file path") + parser.add_argument("output_file", type=str, help="output file path") + parser.add_argument("dpi", type=int, help="dpi of used scanner") + + # boolean switch argument + parser.add_argument('-m', '--mirror', type=bool, action=ap.BooleanOptionalAction, + help="switch to mirror input image") + + # another boolean switch argument, this time with value, name of the new file and dimensions + parser.add_argument('-s', '--stl_file', type=str, nargs='*', + help="create stl model from processed image") + + # another boolean switch argument, this enables 2d mode + parser.add_argument('-p', '--planar', type=bool, action=ap.BooleanOptionalAction, + help="make stl shape planar instead of curved one") + + # configuration file containing presets, preset name + # pair argument - give both or none + parser.add_argument('-c', '--config', nargs=2, + help='pair: name of the config file with presets, name of the preset') + + # array of unknown length, all filter names saved inside + parser.add_argument('filters', type=str, nargs='*', + help="list of filter names and their parameters in form [filter_name1 param1=value param2=value filter_name2 param1=value...]") + + self.args = parser.parse_args() def parse_params(self, params): - ''' Parse parameters of filters. - Set to None if not given. - They are later set in the filter method. + '''Parse parameters of filters. Set to None if not given. + They are later set to default values in the filter method apply. ''' + # TODO: possibly too bloated, sending all possible params to each filter possible_params = {"h", "searchWindowSize", "templateWindowSize", "ksize", "kernel", "sigmaX", "sigmaY", "sigmaColor", "sigmaSpace", "d", "anchor", "iterations", - "op", "strength", "amount", "radius", "weight", "channelAxis"} + "op", "strength", "amount", "radius", "weight", "channelAxis", + "theta", "sigma", "lambda", "gamma", "psi"} + for key in possible_params: if params.get(key) is None: params[key] = None @@ -122,168 +167,157 @@ class app: params[key] = params[key] def parse_conf(self): - ''' Parse configuration file if one was given and store filters with their parameters + '''Parse configuration file if one was given. + Store filters and their parameters. ''' + # Find preset in config file if self.preset_name in self.config: filter_array = self.config[self.preset_name] + # Iterate over filters in preset, store them and their parameters for i, filter in enumerate(range(len(filter_array)), start=1): self.filters.append(filter_array[filter]["name"]) self.params[i] = {} for attribute, value in filter_array[filter].items(): + # Filter name isn't needed in here if attribute != "name": self.params[i][attribute] = value self.parse_params(self.params[i]) print("Loaded preset: " + self.preset_name + " from file: " + self.config_file) else: - print("Preset not found", file=sys.stderr) + self.error_exit("Preset not found") - def parse_arguments(self): - ''' Parse arguments from command line + def error_exit(self, message): + '''Print error message and exit. ''' - parser = ap.ArgumentParser(prog='main.py', - description='Program for processing a 2D image into 3D fingerprint.', - usage='%(prog)s [-h] [-m | --mirror | --no-mirror] input_file output_file dpi \ - ([-c config_file preset | --config config_file preset] | [filters ...]) \ - [-s stl_file | --stl_file stl_file depth_total depth_line]') + print("ERROR:", message, file=sys.stderr) + exit(1) - # positional arguments - parser.add_argument("input_file", type=str, help="location with input file") - parser.add_argument("output_file", type=str, help="output file location") - parser.add_argument("dpi", type=int, help="scanner dpi") - - # boolean switch argument - parser.add_argument('-m', "--mirror", help="mirror input image", type=bool, action=ap.BooleanOptionalAction) +#------------------------- FILTERING -------------------------# - # another boolean switch argument, this time with value, name of the new file and dimensions - parser.add_argument('-s', '--stl_file', type=str, nargs='*', - help="make planar model from processed image", required=False) + def run_filtering(self): + '''Load from input file, store as numpy.array, + process image using filters and save to output file. + ''' - # file with configuration containing presets, new preset name - # pair argument - give both or none - parser.add_argument('-c', '--config', nargs=2, - help='pair: name of the config file with presets, name of the preset') + self.img = cv.imread( + self.input_file, cv.IMREAD_GRAYSCALE).astype(np.uint8) - # array of unknown length, all filter names saved inside - parser.add_argument('filters', type=str, nargs='*', - help="list of filter names and their parameters in form [filter_name1 param1=value1 param2=value2 filter_name2 param1=value1...]") + self.height, self.width = self.img.shape + print("Height: " + str(self.height) + " px and width: " + + str(self.width) + " px", file=sys.stderr) + size = (self.width/self.dpi, self.height/self.dpi) + fig = plt.figure(figsize=size, frameon=False, dpi=self.dpi) - self.args = parser.parse_args() + ax = plt.Axes(fig, [0., 0., 1., 1.]) + ax.set_axis_off() + fig.add_axes(ax) - def filter_factory(self, filter_name): - ''' Selects filter method of filters library. - ''' + if self.mirror is True: + self.mirror_image() - print("Applying " + filter_name + " filter ", end='') - return getattr(flt, filter_name) + # Apply all filters and save image + self.apply_filters() + self.save_image(fig, ax) + plt.close() def mirror_image(self): - ''' Mirror image when mirroring is needed, - should be used only if we want a positive model - ''' + '''Mirror image using opencv, should be used if we want a positive model. + ''' print("Mirroring image", file=sys.stderr) self.img = cv.flip(self.img, 1) # 1 for vertical mirror - def apply_filter(self): - ''' Apply filters to image. - - Apply the filters one by one, if none were given, just save original image output. + def apply_filters(self): + '''Apply filters to image one by one. + In case none were given, pass and save original image to the output file. ''' if len(self.filters) == 0: - # No filter given, just save the image pass else: # Apply all filters for i, filter_name in enumerate(self.filters): - filter = self.filter_factory(filter_name) + # Get filter class from filter.py, use the apply method + filter = getattr(flt, filter_name) filter.apply(self, self.params[i+1]) def save_image(self, fig, ax): - ''' Save processed image. - Colormap set to grayscale to avoid color mismatch. + '''Save processed image to the output file. ''' - print("Saving image to ", self.output_file, file=sys.stderr) + print("Saving image to", self.output_file, file=sys.stderr) + # Colormap must be set to grayscale to avoid color mismatch. ax.imshow(self.img, cmap="gray") - fig.savefig(fname=self.output_file, dpi='figure') + fig.savefig(fname=self.output_file, dpi=self.dpi) - def print_size(self, size): - print("Image of height: " + str(size[0]) + - " px and width: " + str(size[1]) + " px", file=sys.stderr) +#------------------------- STL GENERATION -------------------------# - def make_model(self): - '''After processing image, make a lithophane from it. + def run_stl(self): + '''Make heightmap, create mesh and save as stl file. ''' - print("Making heighthmap", file=sys.stderr) self.prepare_heightmap() if self.mode == "2d": - print("Converting to stl format", file=sys.stderr) self.make_stl_planar() - plt.show() - print(f"Saving lithophane to ", self.stl_file, file=sys.stderr) - self.save_stl_2d() + elif self.mode == "3d": - self.map_image_to_3d() - plt.show() - self.save_stl_3d() + self.make_stl_curved() + else: - print("Mode not supported", file=sys.stderr) - exit(1) + self.error_exit("Mode not supported") + + plt.show() + print(f"Saving model to ", self.stl_file, file=sys.stderr) + self.save_stl() def prepare_heightmap(self): - ''' Create numpy meshgrid. - Modify image values to get usable depth values. + '''Modify image values to get usable height/depth values. + Check validity of dimension parameters. ''' + # TODO: redo, too complicated, add extra params, redo checks + if self.img.dtype == np.float32 or self.img.dtype == np.float64: print("Converting to uint8", file=sys.stderr) self.img = self.img * 255 self.img = self.img.astype(np.uint8) + print("Creating mesh", file=sys.stderr) if self.mode == "2d": if self.height_base <= 0: - print("Depth of plate height must be positive", file=sys.stderr) - exit(1) + self.error_exit("Depth of plate height must be positive") if self.height_line + self.height_base <= 0: - print("Line depth must be less than plate thickness", file=sys.stderr) - exit(1) - - print("Base height:", self.height_base, - "mm, lines depth/height:", self.height_line, "mm") + self.error_exit("Line depth must be less than plate thickness") # Transform image values to get a heightmap - if self.height_line < 0: - self.img = (self.height_base + (1 - self.img/255) - * self.height_line) - else: - self.img = (self.height_base + (1 - self.img/255) - * self.height_line) + self.img = (self.height_base + (1 - self.img/255) + * self.height_line) if self.mode == "3d": - #TODO add some checks and print info - pass + # TODO check curvature values and print info + # TODO: copy pasta code, remove + # Transform image values to get a heightmap + self.img = (1 - self.img/255) * self.height_line - def add_faces(self, faces, c): + def append_faces(self, faces, c): # Function to add faces to the list faces.append([c, c + 1, c + 2]) faces.append([c + 1, c + 3, c + 2]) return c + 4 def make_stl_planar(self): - ''' Create mesh from meshgrid. + '''Create mesh from meshgrid. Create vertices from meshgrid, add depth values from image. Create faces from vertices. Add vectors and faces to the model. From wikipedia.org/wiki/STL_(file_format): ascii stl format consists of repeating structures: - + facet normal ni nj nk # normal vector outer loop vertex v1x v1y v1z # vertex 1 @@ -299,7 +333,7 @@ class app: self.meshgrid_2d = np.meshgrid(x, y) - # Add the image matrix to the 2D meshgrid and create 1D array of 3D points + # Add the image matrix to the 2D meshgrid and create 1D array of 3D pointsd vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_2d))).T z = (self.img / 10).reshape(-1, 1) vertex_arr = np.concatenate((vertex_arr, z), axis=1) @@ -320,42 +354,42 @@ class app: vertices.append([vertex_arr[i+1][j]]) vertices.append([vertex_arr[i+1][j+1]]) - count = self.add_faces(faces, count) + count = self.append_faces(faces, count) # Add faces for the backside of the lithophane null_arr = np.copy(vertex_arr) for i in range(self.height): for j in range(self.width): null_arr[i][j][2] = 0 - + # Back side faces for i in range(self.height - 1): - for j in range(self.width - 1): + for j in range(self.width - 1): vertices.append([null_arr[i][j]]) vertices.append([null_arr[i+1][j]]) vertices.append([null_arr[i][j+1]]) vertices.append([null_arr[i+1][j+1]]) - count = self.add_faces(faces, count) + count = self.append_faces(faces, count) # Horizontal side faces - for j in range(self.height - 1): - vertices.append([vertex_arr[j][0]]) - vertices.append([vertex_arr[j+1][0]]) - vertices.append([null_arr[j][0]]) - vertices.append([null_arr[j+1][0]]) + for i in range(self.height - 1): + vertices.append([vertex_arr[i][0]]) + vertices.append([vertex_arr[i+1][0]]) + vertices.append([null_arr[i][0]]) + vertices.append([null_arr[i+1][0]]) - count = self.add_faces(faces, count) + count = self.append_faces(faces, count) max = self.width - 1 - vertices.append([vertex_arr[j+1][max]]) - vertices.append([vertex_arr[j][max]]) - vertices.append([null_arr[j+1][max]]) - vertices.append([null_arr[j][max]]) + vertices.append([vertex_arr[i+1][max]]) + vertices.append([vertex_arr[i][max]]) + vertices.append([null_arr[i+1][max]]) + vertices.append([null_arr[i][max]]) - count = self.add_faces(faces, count) + count = self.append_faces(faces, count) # Vertical side faces for j in range(self.width - 1): @@ -364,7 +398,7 @@ class app: vertices.append([null_arr[0][j+1]]) vertices.append([null_arr[0][j]]) - count = self.add_faces(faces, count) + count = self.append_faces(faces, count) max = self.height - 1 @@ -373,41 +407,60 @@ class app: vertices.append([null_arr[max][j]]) vertices.append([null_arr[max][j+1]]) - count = self.add_faces(faces, count) + count = self.append_faces(faces, count) # Convert to numpy arrays faces = np.array(faces) vertices = np.array(vertices) # Create the mesh - vertices.shape (no_faces, 3, 3) - self.stl_mesh_2d = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) + self.stl_lithophane = mesh.Mesh( + np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) for i, face in enumerate(faces): for j in range(3): - self.stl_mesh_2d.vectors[i][j] = vertices[face[j], :] - - def save_stl_2d(self): - ''' Save final mesh to stl file. - ''' - - self.stl_mesh_2d.save(self.stl_file) + self.stl_lithophane.vectors[i][j] = vertices[face[j], :] - def map_image_to_3d(self): - ''' Map fingerprint to finger model. + def make_stl_curved(self): + '''Map fingerprint to finger model. ''' + # TODO: if this is the same as 2D, move to heightmap to reduce duplicate code x = np.linspace(0, self.width * 25.4 / self.dpi, self.width) y = np.linspace(0, self.height * 25.4 / self.dpi, self.height) - z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7) + self.meshgrid_3d = np.meshgrid(x, y) + + # Method 1 - logspace and logarithmic curve + '''z1 = np.logspace(0, 10, int(np.ceil(self.width / 2)), base=0.7) z2 = np.logspace(10, 0, int(np.floor(self.width / 2)), base=0.7) ztemp = 5*np.concatenate((z1, z2)) z = np.array([]) for i in range(self.height): - z = np.concatenate((z, ztemp * pow(np.log(i+2), -1))) + z = np.concatenate((z, ztemp + 25*(((i+50)/20)**(-1/2)))) z = z.reshape(-1, 1) - self.meshgrid_3d = np.meshgrid(x, y) + self.img = (self.img / 10).reshape(-1, 1) + z += self.img''' + + # Method 2 - 2 ellipses + z = np.array([]) + for x in range(self.width): + z = np.append(z, np.sqrt(1 - (2*x/self.width - 1)**2) + * (self.curv_rate_x**2)) + z = np.tile(z, (self.height, 1)) + for y in range(self.height): + new = np.sqrt((1 - ((self.height - y)/self.height)**2) + * (self.curv_rate_y**2)) + z[y] = z[y] + new + + # TODO: clip responsivelly + bottom = z[0][math.floor(self.width/2)] + #top = self.curv_rate_x**2 + self.curv_rate_y + #np.clip(z, bottom, top, out=z) + z = z.reshape(-1, 1) + self.img = (self.img / 10).reshape(-1, 1) + z += self.img vertex_arr = np.vstack(list(map(np.ravel, self.meshgrid_3d))).T vertex_arr = np.concatenate((vertex_arr, z), axis=1) @@ -416,41 +469,119 @@ class app: count = 0 vertices = [] faces = [] + min_point = 0 + for i in range(self.height - 1): + if vertex_arr[i][0][2] <= bottom: + min_point = i + + # Add faces for the backside of the lithophane + vec_side = (vertex_arr[self.height-1][0][2] - + vertex_arr[min_point][0][2]) / (self.height - min_point) + null_arr = np.copy(vertex_arr) + for i in range(self.height): + for j in range(self.width): + null_arr[i][j][2] = 0 + #null_arr[i][j][2] = bottom + vec_side * i + # for smaller mesh # Iterate over all vertices, create faces for i in range(self.height - 1): for j in range(self.width - 1): - + if (vertex_arr[i][j][2] <= null_arr[i][j][2] + or vertex_arr[i+1][j][2] <= null_arr[i+1][j][2] + or vertex_arr[i][j+1][2] <= null_arr[i][j+1][2] + or vertex_arr[i+1][j+1][2] <= null_arr[i+1][j+1][2]): + continue vertices.append([vertex_arr[i][j]]) vertices.append([vertex_arr[i][j+1]]) vertices.append([vertex_arr[i+1][j]]) vertices.append([vertex_arr[i+1][j+1]]) - count = self.add_faces(faces, count) + count = self.append_faces(faces, count) + + # Rotated back side faces + for i in range(self.height - 1): + for j in range(self.width - 1): + if (vertex_arr[i][j][2] <= null_arr[i][j][2]): + continue + + vertices.append([null_arr[i][j]]) + vertices.append([null_arr[i+1][j]]) + vertices.append([null_arr[i][j+1]]) + vertices.append([null_arr[i+1][j+1]]) + + count = self.append_faces(faces, count) + + # Horizontal side faces + for i in range(self.height - 1): # right + #if (vertex_arr[i][0][2] < null_arr[i][0][2]): + # continue + + vertices.append([vertex_arr[i][0]]) + vertices.append([vertex_arr[i+1][0]]) + vertices.append([null_arr[i][0]]) + vertices.append([null_arr[i+1][0]]) + + count = self.append_faces(faces, count) + + for i in range(self.height - 1): # left + max = self.width - 1 + #if (vertex_arr[i][max][2] < null_arr[i][max][2]): + # continue + + vertices.append([vertex_arr[i+1][max]]) + vertices.append([vertex_arr[i][max]]) + vertices.append([null_arr[i+1][max]]) + vertices.append([null_arr[i][max]]) + + count = self.append_faces(faces, count) - #self.finger_base = mesh.Mesh(np.zeros(, dtype=mesh.Mesh.dtype)) + # Vertical side faces + for j in range(self.width - 1): # top + #if (vertex_arr[0][j][2] < null_arr[0][j][2]): + # continue + + vertices.append([vertex_arr[0][j+1]]) + vertices.append([vertex_arr[0][j]]) + vertices.append([null_arr[0][j+1]]) + vertices.append([null_arr[0][j]]) + + count = self.append_faces(faces, count) + + for j in range(self.width - 1): # bottom + max = self.height - 1 + #if (vertex_arr[max][j][2] < null_arr[max][j][2]): + # continue - # linear projection - # extrude lines in 1 direction - # cylinder / circular projection - # extrude lines in direction of a suitable cylinder - # normal projection - # extrude lines in the direction of normals of given finger model + vertices.append([vertex_arr[max][j]]) + vertices.append([vertex_arr[max][j+1]]) + vertices.append([null_arr[max][j]]) + vertices.append([null_arr[max][j+1]]) + + count = self.append_faces(faces, count) # Convert to numpy arrays faces = np.array(faces) vertices = np.array(vertices) # Create the mesh - vertices.shape (no_faces, 3, 3) - self.mesh_finger = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) + self.mesh_finger = mesh.Mesh( + np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) for i, face in enumerate(faces): for j in range(3): self.mesh_finger.vectors[i][j] = vertices[face[j], :] - def save_stl_3d(self): - ''' Save final mesh to stl file. + # print(self.mesh_finger.normals) + + def save_stl(self): + '''Save final mesh to stl file. ''' - self.mesh_finger.save(self.stl_file) + if self.mode == "3d": + self.mesh_finger.save(self.stl_file) + else: + self.stl_lithophane.save(self.stl_file) + +# run the application image = app()