You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
Ayush Chaurasia 6d5123297e
Fix CLI detect and segment resume (#134)
2 years ago
.github Add Dockerfiles and update Docs README (#124) 2 years ago
docker Add Dockerfiles and update Docs README (#124) 2 years ago
docs Unified model loading with backwards compatibility (#132) 2 years ago
tests Fix `yolo mode=train` CLI bug on model load (#133) 2 years ago
ultralytics Fix CLI detect and segment resume (#134) 2 years ago
.gitignore Integration of v8 segmentation (#107) 2 years ago
.pre-commit-config.yaml Add Dockerfiles and update Docs README (#124) 2 years ago
CITATION.cff Fix CITATION.cff typos (#64) 2 years ago
CONTRIBUTING.md docs setup (#61) 2 years ago
LICENSE Initial commit 2 years ago
MANIFEST.in Trainer + Dataloaders (#27) 2 years ago
README.md [Docs]: Link buttons, add autobackend, BaseModel and ops (#130) 2 years ago
mkdocs.yml [Docs]: Link buttons, add autobackend, BaseModel and ops (#130) 2 years ago
requirements.txt Add CoreML iOS updates (#121) 2 years ago
setup.cfg Flake8 updates (#66) 2 years ago
setup.py docs setup (#61) 2 years ago

README.md

Ultralytics CI

Install

pip install ultralytics

Development

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

Usage

1. CLI

To simply use the latest Ultralytics YOLO models

yolo task=detect    mode=train    model=yolov8n.yaml      args=...
          classify       predict        yolov8n-cls.yaml  args=...
          segment        val            yolov8n-seg.yaml  args=...
                         export         yolov8n.pt        format=onnx

2. Python SDK

To use pythonic interface of Ultralytics YOLO model

from ultralytics import YOLO

model = YOLO("yolov8n.yaml")  # create a new model from scratch
model = YOLO(
    "yolov8n.pt"
)  # load a pretrained model (recommended for best training results)
results = model.train(data="coco128.yaml", epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source="bus.jpg")
success = model.export(format="onnx")

If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.