Pip debug fixes (#139)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 340376f7a6
commit d74de2582c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -3,56 +3,50 @@ import torch
from ultralytics import YOLO
from ultralytics.yolo.utils import ROOT
MODEL = ROOT / 'weights/yolov8n.pt'
CFG = 'yolov8n.yaml'
def test_model_forward():
model = YOLO("yolov8n.yaml")
model = YOLO(CFG)
img = torch.rand(1, 3, 320, 320)
model.forward(img)
model(img)
def test_model_info():
model = YOLO("yolov8n.yaml")
model = YOLO(CFG)
model.info()
model = YOLO("yolov8n.pt")
model = YOLO(MODEL)
model.info(verbose=True)
def test_model_fuse():
model = YOLO("yolov8n.yaml")
model = YOLO(CFG)
model.fuse()
model = YOLO("yolov8n.pt")
model = YOLO(MODEL)
model.fuse()
def test_predict_dir():
model = YOLO("yolov8n.pt")
model = YOLO(MODEL)
model.predict(source=ROOT / "assets")
def test_val():
model = YOLO("yolov8n.pt")
model = YOLO(MODEL)
model.val(data="coco128.yaml", imgsz=32)
def test_train_resume():
model = YOLO("yolov8n.yaml")
model.train(epochs=1, imgsz=32, data="coco128.yaml")
try:
model.resume(task="detect")
except AssertionError:
print("Successfully caught resume assert!")
def test_train_scratch():
model = YOLO("yolov8n.yaml")
model = YOLO(CFG)
model.train(data="coco128.yaml", epochs=1, imgsz=32)
img = torch.rand(1, 3, 320, 320)
model(img)
def test_train_pretrained():
model = YOLO("yolov8n.pt")
model = YOLO(MODEL)
model.train(data="coco128.yaml", epochs=1, imgsz=32)
img = torch.rand(1, 3, 320, 320)
model(img)
@ -77,27 +71,27 @@ def test_export_torchscript():
from ultralytics.yolo.engine.exporter import export_formats
print(export_formats())
model = YOLO("yolov8n.yaml")
model = YOLO(MODEL)
model.export(format='torchscript')
def test_export_onnx():
model = YOLO("yolov8n.yaml")
model = YOLO(MODEL)
model.export(format='onnx')
def test_export_openvino():
model = YOLO("yolov8n.yaml")
model = YOLO(MODEL)
model.export(format='openvino')
def test_export_coreml():
model = YOLO("yolov8n.yaml")
model = YOLO(MODEL)
model.export(format='coreml')
def test_export_paddle():
model = YOLO("yolov8n.yaml")
model = YOLO(MODEL)
model.export(format='paddle')

@ -292,7 +292,8 @@ def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
# Model compatibility updates
ckpt.args = {k: v for k, v in args.items() if k in DEFAULT_CONFIG_KEYS}
ckpt.args = {k: v for k, v in args.items() if k in DEFAULT_CONFIG_KEYS} # attach args to model
ckpt.pt_path = weights # attach *.pt file path to model
if not hasattr(ckpt, 'stride'):
ckpt.stride = torch.tensor([32.])

@ -156,7 +156,7 @@ class Exporter:
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
# Load PyTorch model
self.device = select_device(self.args.device)
self.device = select_device(self.args.device or 'cpu')
if self.args.half:
if self.device.type == 'cpu' or not coreml:
LOGGER.info('half=True only compatible with GPU or CoreML export, i.e. use device=0 or format=coreml')
@ -172,7 +172,9 @@ class Exporter:
# Input
im = torch.zeros(self.args.batch_size, 3, *self.imgsz).to(self.device)
file = Path(getattr(model, 'yaml_file', None) or Path(model.yaml['yaml_file']).name)
file = Path(getattr(model, 'pt_path', None) or model.yaml['yaml_file'])
if file.suffix == '.yaml':
file = Path(file.name)
# Update model
model = deepcopy(model)

@ -213,9 +213,8 @@ class YOLO:
@smart_inference_mode()
def __call__(self, imgs):
if not self.model:
LOGGER.info("model not initialized!")
return self.model(imgs)
device = next(self.model.parameters()).device # get model device
return self.model(imgs.to(device))
def forward(self, imgs):
return self.__call__(imgs)

@ -81,12 +81,11 @@ class BaseTrainer:
overrides = {}
self.args = get_config(config, overrides)
self.check_resume()
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)
self.console = LOGGER
self.validator = None
self.model = None
self.callbacks = defaultdict(list)
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)
# Dirs
project = self.args.project or f"runs/{self.args.task}"

@ -62,6 +62,7 @@ HELP_MSG = \
pd.options.display.max_columns = 10
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # for deterministic training
# Default config dictionary
with open(DEFAULT_CONFIG, errors='ignore') as f:

@ -189,10 +189,11 @@ class Loss:
def train(cfg):
cfg.model = cfg.model or "yolov8n.yaml"
cfg.data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist")
# cfg.imgsz = 160
# cfg.epochs = 5
trainer = DetectionTrainer(cfg)
trainer.train()
# trainer = DetectionTrainer(cfg)
# trainer.train()
from ultralytics import YOLO
model = YOLO(cfg.model)
model.train(**cfg)
if __name__ == "__main__":

@ -176,8 +176,11 @@ class SegLoss:
def train(cfg):
cfg.model = cfg.model or "yolov8n-seg.yaml"
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
trainer = SegmentationTrainer(cfg)
trainer.train()
# trainer = SegmentationTrainer(cfg)
# trainer.train()
from ultralytics import YOLO
model = YOLO(cfg.model)
model.train(**cfg)
if __name__ == "__main__":

Loading…
Cancel
Save