New train profile
argument for loggers (#2862)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -1,3 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .base import add_integration_callbacks, default_callbacks, get_default_callbacks
|
||||
|
||||
__all__ = 'add_integration_callbacks', 'default_callbacks', 'get_default_callbacks'
|
||||
|
@ -1,11 +1,12 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import re
|
||||
|
||||
import matplotlib.image as mpimg
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
try:
|
||||
import clearml
|
||||
@ -105,11 +106,7 @@ def on_fit_epoch_end(trainer):
|
||||
value=trainer.epoch_time,
|
||||
iteration=trainer.epoch)
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
for k, v in model_info.items():
|
||||
for k, v in model_info_for_loggers(trainer).items():
|
||||
task.get_logger().report_single_value(k, v)
|
||||
|
||||
|
||||
|
@ -1,9 +1,10 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, RANK, TESTS_RUNNING, ops
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
try:
|
||||
import comet_ml
|
||||
@ -324,11 +325,7 @@ def on_fit_epoch_end(trainer):
|
||||
experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch)
|
||||
experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch)
|
||||
if curr_epoch == 1:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3), }
|
||||
experiment.log_metrics(model_info, step=curr_step, epoch=curr_epoch)
|
||||
experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch)
|
||||
|
||||
if not save_assets:
|
||||
return
|
||||
|
@ -5,7 +5,7 @@ from time import time
|
||||
|
||||
from ultralytics.hub.utils import PREFIX, events
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
|
||||
def on_pretrain_routine_end(trainer):
|
||||
@ -24,11 +24,7 @@ def on_fit_epoch_end(trainer):
|
||||
# Upload metrics after val end
|
||||
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
all_plots = {**all_plots, **model_info}
|
||||
all_plots = {**all_plots, **model_info_for_loggers(trainer)}
|
||||
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
|
||||
if time() - session.timers['metrics'] > session.rate_limits['metrics']:
|
||||
session.upload_metrics()
|
||||
|
@ -1,9 +1,10 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import matplotlib.image as mpimg
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
try:
|
||||
import neptune
|
||||
@ -68,11 +69,7 @@ def on_train_epoch_end(trainer):
|
||||
def on_fit_epoch_end(trainer):
|
||||
"""Callback function called at end of each fit (train+val) epoch."""
|
||||
if run and trainer.epoch == 0:
|
||||
model_info = {
|
||||
'parameters': get_num_params(trainer.model),
|
||||
'GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
run['Configuration/Model'] = model_info
|
||||
run['Configuration/Model'] = model_info_for_loggers(trainer)
|
||||
_log_scalars(trainer.metrics, trainer.epoch + 1)
|
||||
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
try:
|
||||
import ray
|
||||
from ray import tune
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr
|
||||
|
||||
try:
|
||||
|
@ -1,30 +1,27 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
from ultralytics.yolo.utils import TESTS_RUNNING
|
||||
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
try:
|
||||
import wandb as wb
|
||||
|
||||
assert hasattr(wb, '__version__')
|
||||
assert not TESTS_RUNNING # do not log pytest
|
||||
except (ImportError, AssertionError):
|
||||
wb = None
|
||||
|
||||
|
||||
def on_pretrain_routine_start(trainer):
|
||||
"""Initiate and start project if module is present."""
|
||||
wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(
|
||||
trainer.args)) if not wb.run else wb.run
|
||||
wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args))
|
||||
|
||||
|
||||
def on_fit_epoch_end(trainer):
|
||||
"""Logs training metrics and model information at the end of an epoch."""
|
||||
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
wb.run.log(model_info, step=trainer.epoch + 1)
|
||||
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
|
||||
|
||||
|
||||
def on_train_epoch_end(trainer):
|
||||
|
Reference in New Issue
Block a user