New train `profile` argument for loggers (#2862)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 0bdd4ad379
commit 6391c60089
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -24,7 +24,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e .
RUN pip install --no-cache -e . thop
# Usage Examples -------------------------------------------------------------------------------------------------------

@ -25,7 +25,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e . --extra-index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache -e . thop --extra-index-url https://download.pytorch.org/whl/cpu
# Usage Examples -------------------------------------------------------------------------------------------------------

@ -25,7 +25,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages manually for TensorRT compatibility https://github.com/NVIDIA/TensorRT/issues/2567
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache tqdm matplotlib pyyaml psutil pandas onnx "numpy==1.23"
RUN pip install --no-cache tqdm matplotlib pyyaml psutil pandas onnx thop "numpy==1.23"
RUN pip install --no-cache -e .
# Set environment variables

@ -83,6 +83,7 @@ task.
| `resume` | `False` | resume training from last checkpoint |
| `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] |
| `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) |
| `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers |
| `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
| `lrf` | `0.01` | final learning rate (lr0 * lrf) |
| `momentum` | `0.937` | SGD momentum/Adam beta1 |

@ -105,6 +105,7 @@ The training settings for YOLO models encompass various hyperparameters and conf
| `resume` | `False` | resume training from last checkpoint |
| `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] |
| `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) |
| `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers |
| `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
| `lrf` | `0.01` | final learning rate (lr0 * lrf) |
| `momentum` | `0.937` | SGD momentum/Adam beta1 |

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import re
import shutil
@ -72,7 +73,7 @@ CFG_INT_KEYS = ('epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic'
CFG_BOOL_KEYS = ('save', 'exist_ok', 'verbose', 'deterministic', 'single_cls', 'rect', 'cos_lr', 'overlap_mask', 'val',
'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf', 'save_crop',
'show_labels', 'show_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader')
'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader', 'profile')
def cfg2dict(cfg):

@ -31,6 +31,7 @@ close_mosaic: 0 # (int) disable mosaic augmentation for final epochs
resume: False # resume training from last checkpoint
amp: True # Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0 # dataset fraction to train on (default is 1.0, all images in train set)
profile: False # profile ONNX and TensorRT speeds during training for loggers
# Segmentation
overlap_mask: True # masks should overlap during training (segment train only)
mask_ratio: 4 # mask downsample ratio (segment train only)

@ -4,7 +4,7 @@ Benchmark a YOLO model formats for speed and accuracy
Usage:
from ultralytics.yolo.utils.benchmarks import ProfileModels, benchmark
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'])
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
run_benchmarks(model='yolov8n.pt', imgsz=160)
Format | `format=argument` | Model
@ -163,13 +163,13 @@ class ProfileModels:
profile(): Profiles the models and prints the result.
"""
def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=10, imgsz=640, trt=True):
def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=10, imgsz=640, trt=True, device=None):
self.paths = paths
self.num_timed_runs = num_timed_runs
self.num_warmup_runs = num_warmup_runs
self.imgsz = imgsz
self.trt = trt # run TensorRT profiling
self.profile() # run profiling
self.device = device or torch.device(0 if torch.cuda.is_available() else 'cpu')
def profile(self):
files = self.get_files()
@ -179,15 +179,16 @@ class ProfileModels:
return
table_rows = []
device = 0 if torch.cuda.is_available() else 'cpu'
output = []
for file in files:
engine_file = file.with_suffix('.engine')
if file.suffix in ('.pt', '.yaml'):
model = YOLO(str(file))
model.fuse() # to report correct params and GFLOPs in model.info()
model_info = model.info()
if self.trt and device == 0 and not engine_file.is_file():
engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=device)
onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=device)
if self.trt and self.device.type != 'cpu' and not engine_file.is_file():
engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=self.device)
onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=self.device)
elif file.suffix == '.onnx':
model_info = self.get_onnx_model_info(file)
onnx_file = file
@ -197,8 +198,10 @@ class ProfileModels:
t_engine = self.profile_tensorrt_model(str(engine_file))
t_onnx = self.profile_onnx_model(str(onnx_file))
table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info))
self.print_table(table_rows)
return output
def get_files(self):
files = []
@ -219,7 +222,7 @@ class ProfileModels:
# return (num_layers, num_params, num_gradients, num_flops)
return 0.0, 0.0, 0.0, 0.0
def iterative_sigma_clipping(self, data, sigma=2, max_iters=5):
def iterative_sigma_clipping(self, data, sigma=2, max_iters=3):
data = np.array(data)
for _ in range(max_iters):
mean, std = np.mean(data), np.std(data)
@ -235,13 +238,13 @@ class ProfileModels:
# Warmup runs
model = YOLO(engine_file)
input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32)
input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32
for _ in range(self.num_warmup_runs):
model(input_data, verbose=False)
# Timed runs
run_times = []
for _ in tqdm(range(self.num_timed_runs * 30), desc=engine_file):
for _ in tqdm(range(self.num_timed_runs * 50), desc=engine_file):
results = model(input_data, verbose=False)
run_times.append(results[0].speed['inference']) # Convert to milliseconds
@ -255,6 +258,7 @@ class ProfileModels:
# Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.intra_op_num_threads = 8 # Limit the number of threads
sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider'])
input_tensor = sess.get_inputs()[0]
@ -289,13 +293,22 @@ class ProfileModels:
sess.run([output_name], {input_name: input_data})
run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping
return np.mean(run_times), np.std(run_times)
def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
layers, params, gradients, flops = model_info
return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |'
def generate_results_dict(self, model_name, t_onnx, t_engine, model_info):
layers, params, gradients, flops = model_info
return {
'model/name': model_name,
'model/parameters': params,
'model/GFLOPs': round(flops, 3),
'model/speed_ONNX(ms)': round(t_onnx[0], 3),
'model/speed_TensorRT(ms)': round(t_engine[0], 3)}
def print_table(self, table_rows):
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU'
header = f'| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |'

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from .base import add_integration_callbacks, default_callbacks, get_default_callbacks
__all__ = 'add_integration_callbacks', 'default_callbacks', 'get_default_callbacks'

@ -1,11 +1,12 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import re
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import clearml
@ -105,11 +106,7 @@ def on_fit_epoch_end(trainer):
value=trainer.epoch_time,
iteration=trainer.epoch)
if trainer.epoch == 0:
model_info = {
'model/parameters': get_num_params(trainer.model),
'model/GFLOPs': round(get_flops(trainer.model), 3),
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
for k, v in model_info.items():
for k, v in model_info_for_loggers(trainer).items():
task.get_logger().report_single_value(k, v)

@ -1,9 +1,10 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import os
from pathlib import Path
from ultralytics.yolo.utils import LOGGER, RANK, TESTS_RUNNING, ops
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import comet_ml
@ -324,11 +325,7 @@ def on_fit_epoch_end(trainer):
experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch)
experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch)
if curr_epoch == 1:
model_info = {
'model/parameters': get_num_params(trainer.model),
'model/GFLOPs': round(get_flops(trainer.model), 3),
'model/speed(ms)': round(trainer.validator.speed['inference'], 3), }
experiment.log_metrics(model_info, step=curr_step, epoch=curr_epoch)
experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch)
if not save_assets:
return

@ -5,7 +5,7 @@ from time import time
from ultralytics.hub.utils import PREFIX, events
from ultralytics.yolo.utils import LOGGER
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
def on_pretrain_routine_end(trainer):
@ -24,11 +24,7 @@ def on_fit_epoch_end(trainer):
# Upload metrics after val end
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
if trainer.epoch == 0:
model_info = {
'model/parameters': get_num_params(trainer.model),
'model/GFLOPs': round(get_flops(trainer.model), 3),
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
all_plots = {**all_plots, **model_info}
all_plots = {**all_plots, **model_info_for_loggers(trainer)}
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
if time() - session.timers['metrics'] > session.rate_limits['metrics']:
session.upload_metrics()

@ -1,9 +1,10 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import neptune
@ -68,11 +69,7 @@ def on_train_epoch_end(trainer):
def on_fit_epoch_end(trainer):
"""Callback function called at end of each fit (train+val) epoch."""
if run and trainer.epoch == 0:
model_info = {
'parameters': get_num_params(trainer.model),
'GFLOPs': round(get_flops(trainer.model), 3),
'speed(ms)': round(trainer.validator.speed['inference'], 3)}
run['Configuration/Model'] = model_info
run['Configuration/Model'] = model_info_for_loggers(trainer)
_log_scalars(trainer.metrics, trainer.epoch + 1)

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
try:
import ray
from ray import tune

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr
try:

@ -1,30 +1,27 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
from ultralytics.yolo.utils import TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import wandb as wb
assert hasattr(wb, '__version__')
assert not TESTS_RUNNING # do not log pytest
except (ImportError, AssertionError):
wb = None
def on_pretrain_routine_start(trainer):
"""Initiate and start project if module is present."""
wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(
trainer.args)) if not wb.run else wb.run
wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args))
def on_fit_epoch_end(trainer):
"""Logs training metrics and model information at the end of an epoch."""
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
if trainer.epoch == 0:
model_info = {
'model/parameters': get_num_params(trainer.model),
'model/GFLOPs': round(get_flops(trainer.model), 3),
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
wb.run.log(model_info, step=trainer.epoch + 1)
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
def on_train_epoch_end(trainer):

@ -192,6 +192,29 @@ def get_num_gradients(model):
return sum(x.numel() for x in model.parameters() if x.requires_grad)
def model_info_for_loggers(trainer):
"""
Return model info dict with useful model information.
Example for YOLOv8n:
{'model/parameters': 3151904,
'model/GFLOPs': 8.746,
'model/speed_ONNX(ms)': 41.244,
'model/speed_TensorRT(ms)': 3.211,
'model/speed_PyTorch(ms)': 18.755}
"""
if trainer.args.profile: # profile ONNX and TensorRT times
from ultralytics.yolo.utils.benchmarks import ProfileModels
results = ProfileModels([trainer.last], device=trainer.device).profile()[0]
results.pop('model/name')
else: # only return PyTorch times from most recent validation
results = {
'model/parameters': get_num_params(trainer.model),
'model/GFLOPs': round(get_flops(trainer.model), 3)}
results['model/speed_PyTorch(ms)'] = round(trainer.validator.speed['inference'], 3)
return results
def get_flops(model, imgsz=640):
"""Return a YOLO model's FLOPs."""
try:

Loading…
Cancel
Save