diff --git a/docker/Dockerfile-arm64 b/docker/Dockerfile-arm64
index c11dba4..bd54323 100644
--- a/docker/Dockerfile-arm64
+++ b/docker/Dockerfile-arm64
@@ -24,7 +24,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
-RUN pip install --no-cache -e .
+RUN pip install --no-cache -e . thop
# Usage Examples -------------------------------------------------------------------------------------------------------
diff --git a/docker/Dockerfile-cpu b/docker/Dockerfile-cpu
index fa6ec12..c58e423 100644
--- a/docker/Dockerfile-cpu
+++ b/docker/Dockerfile-cpu
@@ -25,7 +25,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
-RUN pip install --no-cache -e . --extra-index-url https://download.pytorch.org/whl/cpu
+RUN pip install --no-cache -e . thop --extra-index-url https://download.pytorch.org/whl/cpu
# Usage Examples -------------------------------------------------------------------------------------------------------
diff --git a/docker/Dockerfile-jetson b/docker/Dockerfile-jetson
index fc4971c..6fbbd5d 100644
--- a/docker/Dockerfile-jetson
+++ b/docker/Dockerfile-jetson
@@ -25,7 +25,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages manually for TensorRT compatibility https://github.com/NVIDIA/TensorRT/issues/2567
RUN python3 -m pip install --upgrade pip wheel
-RUN pip install --no-cache tqdm matplotlib pyyaml psutil pandas onnx "numpy==1.23"
+RUN pip install --no-cache tqdm matplotlib pyyaml psutil pandas onnx thop "numpy==1.23"
RUN pip install --no-cache -e .
# Set environment variables
diff --git a/docs/modes/train.md b/docs/modes/train.md
index 1d629a9..d560360 100644
--- a/docs/modes/train.md
+++ b/docs/modes/train.md
@@ -83,6 +83,7 @@ task.
| `resume` | `False` | resume training from last checkpoint |
| `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] |
| `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) |
+| `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers |
| `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
| `lrf` | `0.01` | final learning rate (lr0 * lrf) |
| `momentum` | `0.937` | SGD momentum/Adam beta1 |
diff --git a/docs/usage/cfg.md b/docs/usage/cfg.md
index ae3853c..0c99002 100644
--- a/docs/usage/cfg.md
+++ b/docs/usage/cfg.md
@@ -105,6 +105,7 @@ The training settings for YOLO models encompass various hyperparameters and conf
| `resume` | `False` | resume training from last checkpoint |
| `amp` | `True` | Automatic Mixed Precision (AMP) training, choices=[True, False] |
| `fraction` | `1.0` | dataset fraction to train on (default is 1.0, all images in train set) |
+| `profile` | `False` | profile ONNX and TensorRT speeds during training for loggers |
| `lr0` | `0.01` | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
| `lrf` | `0.01` | final learning rate (lr0 * lrf) |
| `momentum` | `0.937` | SGD momentum/Adam beta1 |
diff --git a/ultralytics/yolo/cfg/__init__.py b/ultralytics/yolo/cfg/__init__.py
index c3c8d60..bc74d55 100644
--- a/ultralytics/yolo/cfg/__init__.py
+++ b/ultralytics/yolo/cfg/__init__.py
@@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
+
import contextlib
import re
import shutil
@@ -72,7 +73,7 @@ CFG_INT_KEYS = ('epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic'
CFG_BOOL_KEYS = ('save', 'exist_ok', 'verbose', 'deterministic', 'single_cls', 'rect', 'cos_lr', 'overlap_mask', 'val',
'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf', 'save_crop',
'show_labels', 'show_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
- 'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader')
+ 'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader', 'profile')
def cfg2dict(cfg):
diff --git a/ultralytics/yolo/cfg/default.yaml b/ultralytics/yolo/cfg/default.yaml
index abf12c3..41b9449 100644
--- a/ultralytics/yolo/cfg/default.yaml
+++ b/ultralytics/yolo/cfg/default.yaml
@@ -31,6 +31,7 @@ close_mosaic: 0 # (int) disable mosaic augmentation for final epochs
resume: False # resume training from last checkpoint
amp: True # Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0 # dataset fraction to train on (default is 1.0, all images in train set)
+profile: False # profile ONNX and TensorRT speeds during training for loggers
# Segmentation
overlap_mask: True # masks should overlap during training (segment train only)
mask_ratio: 4 # mask downsample ratio (segment train only)
diff --git a/ultralytics/yolo/utils/benchmarks.py b/ultralytics/yolo/utils/benchmarks.py
index ff92683..b87fd2b 100644
--- a/ultralytics/yolo/utils/benchmarks.py
+++ b/ultralytics/yolo/utils/benchmarks.py
@@ -4,7 +4,7 @@ Benchmark a YOLO model formats for speed and accuracy
Usage:
from ultralytics.yolo.utils.benchmarks import ProfileModels, benchmark
- ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'])
+ ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
run_benchmarks(model='yolov8n.pt', imgsz=160)
Format | `format=argument` | Model
@@ -163,13 +163,13 @@ class ProfileModels:
profile(): Profiles the models and prints the result.
"""
- def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=10, imgsz=640, trt=True):
+ def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=10, imgsz=640, trt=True, device=None):
self.paths = paths
self.num_timed_runs = num_timed_runs
self.num_warmup_runs = num_warmup_runs
self.imgsz = imgsz
self.trt = trt # run TensorRT profiling
- self.profile() # run profiling
+ self.device = device or torch.device(0 if torch.cuda.is_available() else 'cpu')
def profile(self):
files = self.get_files()
@@ -179,15 +179,16 @@ class ProfileModels:
return
table_rows = []
- device = 0 if torch.cuda.is_available() else 'cpu'
+ output = []
for file in files:
engine_file = file.with_suffix('.engine')
if file.suffix in ('.pt', '.yaml'):
model = YOLO(str(file))
+ model.fuse() # to report correct params and GFLOPs in model.info()
model_info = model.info()
- if self.trt and device == 0 and not engine_file.is_file():
- engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=device)
- onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=device)
+ if self.trt and self.device.type != 'cpu' and not engine_file.is_file():
+ engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=self.device)
+ onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=self.device)
elif file.suffix == '.onnx':
model_info = self.get_onnx_model_info(file)
onnx_file = file
@@ -197,8 +198,10 @@ class ProfileModels:
t_engine = self.profile_tensorrt_model(str(engine_file))
t_onnx = self.profile_onnx_model(str(onnx_file))
table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
+ output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info))
self.print_table(table_rows)
+ return output
def get_files(self):
files = []
@@ -219,7 +222,7 @@ class ProfileModels:
# return (num_layers, num_params, num_gradients, num_flops)
return 0.0, 0.0, 0.0, 0.0
- def iterative_sigma_clipping(self, data, sigma=2, max_iters=5):
+ def iterative_sigma_clipping(self, data, sigma=2, max_iters=3):
data = np.array(data)
for _ in range(max_iters):
mean, std = np.mean(data), np.std(data)
@@ -235,13 +238,13 @@ class ProfileModels:
# Warmup runs
model = YOLO(engine_file)
- input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32)
+ input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32
for _ in range(self.num_warmup_runs):
model(input_data, verbose=False)
# Timed runs
run_times = []
- for _ in tqdm(range(self.num_timed_runs * 30), desc=engine_file):
+ for _ in tqdm(range(self.num_timed_runs * 50), desc=engine_file):
results = model(input_data, verbose=False)
run_times.append(results[0].speed['inference']) # Convert to milliseconds
@@ -255,6 +258,7 @@ class ProfileModels:
# Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
+ sess_options.intra_op_num_threads = 8 # Limit the number of threads
sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider'])
input_tensor = sess.get_inputs()[0]
@@ -289,13 +293,22 @@ class ProfileModels:
sess.run([output_name], {input_name: input_data})
run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds
- run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
+ run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping
return np.mean(run_times), np.std(run_times)
def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
layers, params, gradients, flops = model_info
return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |'
+ def generate_results_dict(self, model_name, t_onnx, t_engine, model_info):
+ layers, params, gradients, flops = model_info
+ return {
+ 'model/name': model_name,
+ 'model/parameters': params,
+ 'model/GFLOPs': round(flops, 3),
+ 'model/speed_ONNX(ms)': round(t_onnx[0], 3),
+ 'model/speed_TensorRT(ms)': round(t_engine[0], 3)}
+
def print_table(self, table_rows):
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU'
header = f'| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
{gpu} TensorRT
(ms) | params
(M) | FLOPs
(B) |'
diff --git a/ultralytics/yolo/utils/callbacks/__init__.py b/ultralytics/yolo/utils/callbacks/__init__.py
index 1071ef4..8ad4ad6 100644
--- a/ultralytics/yolo/utils/callbacks/__init__.py
+++ b/ultralytics/yolo/utils/callbacks/__init__.py
@@ -1,3 +1,5 @@
+# Ultralytics YOLO 🚀, AGPL-3.0 license
+
from .base import add_integration_callbacks, default_callbacks, get_default_callbacks
__all__ = 'add_integration_callbacks', 'default_callbacks', 'get_default_callbacks'
diff --git a/ultralytics/yolo/utils/callbacks/clearml.py b/ultralytics/yolo/utils/callbacks/clearml.py
index 094ad10..2cfdd73 100644
--- a/ultralytics/yolo/utils/callbacks/clearml.py
+++ b/ultralytics/yolo/utils/callbacks/clearml.py
@@ -1,11 +1,12 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
+
import re
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
-from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
+from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import clearml
@@ -105,11 +106,7 @@ def on_fit_epoch_end(trainer):
value=trainer.epoch_time,
iteration=trainer.epoch)
if trainer.epoch == 0:
- model_info = {
- 'model/parameters': get_num_params(trainer.model),
- 'model/GFLOPs': round(get_flops(trainer.model), 3),
- 'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
- for k, v in model_info.items():
+ for k, v in model_info_for_loggers(trainer).items():
task.get_logger().report_single_value(k, v)
diff --git a/ultralytics/yolo/utils/callbacks/comet.py b/ultralytics/yolo/utils/callbacks/comet.py
index f35eed2..bbf93ab 100644
--- a/ultralytics/yolo/utils/callbacks/comet.py
+++ b/ultralytics/yolo/utils/callbacks/comet.py
@@ -1,9 +1,10 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
+
import os
from pathlib import Path
from ultralytics.yolo.utils import LOGGER, RANK, TESTS_RUNNING, ops
-from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
+from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import comet_ml
@@ -324,11 +325,7 @@ def on_fit_epoch_end(trainer):
experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch)
experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch)
if curr_epoch == 1:
- model_info = {
- 'model/parameters': get_num_params(trainer.model),
- 'model/GFLOPs': round(get_flops(trainer.model), 3),
- 'model/speed(ms)': round(trainer.validator.speed['inference'], 3), }
- experiment.log_metrics(model_info, step=curr_step, epoch=curr_epoch)
+ experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch)
if not save_assets:
return
diff --git a/ultralytics/yolo/utils/callbacks/hub.py b/ultralytics/yolo/utils/callbacks/hub.py
index 3617a5a..e3b3427 100644
--- a/ultralytics/yolo/utils/callbacks/hub.py
+++ b/ultralytics/yolo/utils/callbacks/hub.py
@@ -5,7 +5,7 @@ from time import time
from ultralytics.hub.utils import PREFIX, events
from ultralytics.yolo.utils import LOGGER
-from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
+from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
def on_pretrain_routine_end(trainer):
@@ -24,11 +24,7 @@ def on_fit_epoch_end(trainer):
# Upload metrics after val end
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
if trainer.epoch == 0:
- model_info = {
- 'model/parameters': get_num_params(trainer.model),
- 'model/GFLOPs': round(get_flops(trainer.model), 3),
- 'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
- all_plots = {**all_plots, **model_info}
+ all_plots = {**all_plots, **model_info_for_loggers(trainer)}
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
if time() - session.timers['metrics'] > session.rate_limits['metrics']:
session.upload_metrics()
diff --git a/ultralytics/yolo/utils/callbacks/neptune.py b/ultralytics/yolo/utils/callbacks/neptune.py
index 1355d81..96cb049 100644
--- a/ultralytics/yolo/utils/callbacks/neptune.py
+++ b/ultralytics/yolo/utils/callbacks/neptune.py
@@ -1,9 +1,10 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
+
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
-from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
+from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import neptune
@@ -68,11 +69,7 @@ def on_train_epoch_end(trainer):
def on_fit_epoch_end(trainer):
"""Callback function called at end of each fit (train+val) epoch."""
if run and trainer.epoch == 0:
- model_info = {
- 'parameters': get_num_params(trainer.model),
- 'GFLOPs': round(get_flops(trainer.model), 3),
- 'speed(ms)': round(trainer.validator.speed['inference'], 3)}
- run['Configuration/Model'] = model_info
+ run['Configuration/Model'] = model_info_for_loggers(trainer)
_log_scalars(trainer.metrics, trainer.epoch + 1)
diff --git a/ultralytics/yolo/utils/callbacks/raytune.py b/ultralytics/yolo/utils/callbacks/raytune.py
index 1fff729..1f53225 100644
--- a/ultralytics/yolo/utils/callbacks/raytune.py
+++ b/ultralytics/yolo/utils/callbacks/raytune.py
@@ -1,3 +1,5 @@
+# Ultralytics YOLO 🚀, AGPL-3.0 license
+
try:
import ray
from ray import tune
diff --git a/ultralytics/yolo/utils/callbacks/tensorboard.py b/ultralytics/yolo/utils/callbacks/tensorboard.py
index 8c14dcb..a436b9c 100644
--- a/ultralytics/yolo/utils/callbacks/tensorboard.py
+++ b/ultralytics/yolo/utils/callbacks/tensorboard.py
@@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
+
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr
try:
diff --git a/ultralytics/yolo/utils/callbacks/wb.py b/ultralytics/yolo/utils/callbacks/wb.py
index f8776cd..2b3d40d 100644
--- a/ultralytics/yolo/utils/callbacks/wb.py
+++ b/ultralytics/yolo/utils/callbacks/wb.py
@@ -1,30 +1,27 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
-from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
+from ultralytics.yolo.utils import TESTS_RUNNING
+from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import wandb as wb
assert hasattr(wb, '__version__')
+ assert not TESTS_RUNNING # do not log pytest
except (ImportError, AssertionError):
wb = None
def on_pretrain_routine_start(trainer):
"""Initiate and start project if module is present."""
- wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(
- trainer.args)) if not wb.run else wb.run
+ wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args))
def on_fit_epoch_end(trainer):
"""Logs training metrics and model information at the end of an epoch."""
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
if trainer.epoch == 0:
- model_info = {
- 'model/parameters': get_num_params(trainer.model),
- 'model/GFLOPs': round(get_flops(trainer.model), 3),
- 'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
- wb.run.log(model_info, step=trainer.epoch + 1)
+ wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
def on_train_epoch_end(trainer):
diff --git a/ultralytics/yolo/utils/torch_utils.py b/ultralytics/yolo/utils/torch_utils.py
index f6862fc..98c0302 100644
--- a/ultralytics/yolo/utils/torch_utils.py
+++ b/ultralytics/yolo/utils/torch_utils.py
@@ -192,6 +192,29 @@ def get_num_gradients(model):
return sum(x.numel() for x in model.parameters() if x.requires_grad)
+def model_info_for_loggers(trainer):
+ """
+ Return model info dict with useful model information.
+
+ Example for YOLOv8n:
+ {'model/parameters': 3151904,
+ 'model/GFLOPs': 8.746,
+ 'model/speed_ONNX(ms)': 41.244,
+ 'model/speed_TensorRT(ms)': 3.211,
+ 'model/speed_PyTorch(ms)': 18.755}
+ """
+ if trainer.args.profile: # profile ONNX and TensorRT times
+ from ultralytics.yolo.utils.benchmarks import ProfileModels
+ results = ProfileModels([trainer.last], device=trainer.device).profile()[0]
+ results.pop('model/name')
+ else: # only return PyTorch times from most recent validation
+ results = {
+ 'model/parameters': get_num_params(trainer.model),
+ 'model/GFLOPs': round(get_flops(trainer.model), 3)}
+ results['model/speed_PyTorch(ms)'] = round(trainer.validator.speed['inference'], 3)
+ return results
+
+
def get_flops(model, imgsz=640):
"""Return a YOLO model's FLOPs."""
try: