|
|
|
from copy import deepcopy
|
|
|
|
from functools import lru_cache
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torchvision.transforms.functional as F
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER, ops
|
|
|
|
from ultralytics.yolo.utils.plotting import Annotator, colors
|
|
|
|
|
|
|
|
|
|
|
|
class Results:
|
|
|
|
"""
|
|
|
|
A class for storing and manipulating inference results.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
|
|
|
masks (Masks, optional): A Masks object containing the detection masks.
|
|
|
|
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
|
|
|
orig_img (tuple, optional): Original image size.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
|
|
|
masks (Masks, optional): A Masks object containing the detection masks.
|
|
|
|
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
|
|
|
orig_img (tuple, optional): Original image size.
|
|
|
|
data (torch.Tensor): The raw masks tensor
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, boxes=None, masks=None, probs=None, orig_img=None, names=None) -> None:
|
|
|
|
self.orig_img = orig_img
|
|
|
|
self.orig_shape = orig_img.shape[:2]
|
|
|
|
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
|
|
|
|
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
|
|
|
|
self.probs = probs if probs is not None else None
|
|
|
|
self.names = names
|
|
|
|
self.comp = ['boxes', 'masks', 'probs']
|
|
|
|
|
|
|
|
def pandas(self):
|
|
|
|
pass
|
|
|
|
# TODO masks.pandas + boxes.pandas + cls.pandas
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
r = Results(orig_img=self.orig_img)
|
|
|
|
for item in self.comp:
|
|
|
|
if getattr(self, item) is None:
|
|
|
|
continue
|
|
|
|
setattr(r, item, getattr(self, item)[idx])
|
|
|
|
return r
|
|
|
|
|
|
|
|
def update(self, boxes=None, masks=None, probs=None):
|
|
|
|
if boxes is not None:
|
|
|
|
self.boxes = Boxes(boxes, self.orig_shape)
|
|
|
|
if masks is not None:
|
|
|
|
self.masks = Masks(masks, self.orig_shape)
|
|
|
|
if boxes is not None:
|
|
|
|
self.probs = probs
|
|
|
|
|
|
|
|
def cpu(self):
|
|
|
|
r = Results(orig_img=self.orig_img)
|
|
|
|
for item in self.comp:
|
|
|
|
if getattr(self, item) is None:
|
|
|
|
continue
|
|
|
|
setattr(r, item, getattr(self, item).cpu())
|
|
|
|
return r
|
|
|
|
|
|
|
|
def numpy(self):
|
|
|
|
r = Results(orig_img=self.orig_img)
|
|
|
|
for item in self.comp:
|
|
|
|
if getattr(self, item) is None:
|
|
|
|
continue
|
|
|
|
setattr(r, item, getattr(self, item).numpy())
|
|
|
|
return r
|
|
|
|
|
|
|
|
def cuda(self):
|
|
|
|
r = Results(orig_img=self.orig_img)
|
|
|
|
for item in self.comp:
|
|
|
|
if getattr(self, item) is None:
|
|
|
|
continue
|
|
|
|
setattr(r, item, getattr(self, item).cuda())
|
|
|
|
return r
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
r = Results(orig_img=self.orig_img)
|
|
|
|
for item in self.comp:
|
|
|
|
if getattr(self, item) is None:
|
|
|
|
continue
|
|
|
|
setattr(r, item, getattr(self, item).to(*args, **kwargs))
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
for item in self.comp:
|
|
|
|
if getattr(self, item) is None:
|
|
|
|
continue
|
|
|
|
return len(getattr(self, item))
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
str_out = ''
|
|
|
|
for item in self.comp:
|
|
|
|
if getattr(self, item) is None:
|
|
|
|
continue
|
|
|
|
str_out = str_out + getattr(self, item).__str__()
|
|
|
|
return str_out
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
str_out = ''
|
|
|
|
for item in self.comp:
|
|
|
|
if getattr(self, item) is None:
|
|
|
|
continue
|
|
|
|
str_out = str_out + getattr(self, item).__repr__()
|
|
|
|
return str_out
|
|
|
|
|
|
|
|
def __getattr__(self, attr):
|
|
|
|
name = self.__class__.__name__
|
|
|
|
raise AttributeError(f"""
|
|
|
|
'{name}' object has no attribute '{attr}'. Valid '{name}' object attributes and properties are:
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
|
|
|
masks (Masks, optional): A Masks object containing the detection masks.
|
|
|
|
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
|
|
|
orig_shape (tuple, optional): Original image size.
|
|
|
|
""")
|
|
|
|
|
|
|
|
def visualize(self, show_conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
|
|
|
|
"""
|
|
|
|
Plots the given result on an input RGB image. Accepts cv2(numpy) or PIL Image
|
|
|
|
|
|
|
|
Args:
|
|
|
|
show_conf (bool): Show confidence
|
|
|
|
line_width (Float): The line width of boxes. Automatically scaled to img size if not provided
|
|
|
|
font_size (Float): The font size of . Automatically scaled to img size if not provided
|
|
|
|
"""
|
|
|
|
img = deepcopy(self.orig_img)
|
|
|
|
annotator = Annotator(img, line_width, font_size, font, pil, example)
|
|
|
|
boxes = self.boxes
|
|
|
|
masks = self.masks
|
|
|
|
logits = self.probs
|
|
|
|
names = self.names
|
|
|
|
if boxes is not None:
|
|
|
|
for d in reversed(boxes):
|
|
|
|
cls, conf = d.cls.squeeze(), d.conf.squeeze()
|
|
|
|
c = int(cls)
|
|
|
|
label = (f'{names[c]}' if names else f'{c}') + (f'{conf:.2f}' if show_conf else '')
|
|
|
|
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
|
|
|
|
|
|
|
|
if masks is not None:
|
|
|
|
im_gpu = torch.as_tensor(img, dtype=torch.float16).permute(2, 0, 1).flip(0).contiguous()
|
|
|
|
im_gpu = F.resize(im_gpu, masks.data.shape[1:]) / 255
|
|
|
|
annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im_gpu)
|
|
|
|
|
|
|
|
if logits is not None:
|
|
|
|
top5i = logits.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
|
|
|
text = f"{', '.join(f'{names[j] if names else j} {logits[j]:.2f}' for j in top5i)}, "
|
|
|
|
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors
|
|
|
|
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
class Boxes:
|
|
|
|
"""
|
|
|
|
A class for storing and manipulating detection boxes.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
|
|
|
with shape (num_boxes, 6). The last two columns should contain confidence and class values.
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
|
|
|
with shape (num_boxes, 6).
|
|
|
|
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
|
|
|
|
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
|
|
|
|
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
|
|
|
|
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
|
|
|
|
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
|
|
|
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
|
|
|
|
data (torch.Tensor): The raw bboxes tensor
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, boxes, orig_shape) -> None:
|
|
|
|
if boxes.ndim == 1:
|
|
|
|
boxes = boxes[None, :]
|
|
|
|
n = boxes.shape[-1]
|
|
|
|
assert n in {6, 7}, f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls
|
|
|
|
# TODO
|
|
|
|
self.is_track = n == 7
|
|
|
|
self.boxes = boxes
|
|
|
|
self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \
|
|
|
|
else np.asarray(orig_shape)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def xyxy(self):
|
|
|
|
return self.boxes[:, :4]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def conf(self):
|
|
|
|
return self.boxes[:, -2]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def cls(self):
|
|
|
|
return self.boxes[:, -1]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def id(self):
|
|
|
|
return self.boxes[:, -3] if self.is_track else None
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=2) # maxsize 1 should suffice
|
|
|
|
def xywh(self):
|
|
|
|
return ops.xyxy2xywh(self.xyxy)
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=2)
|
|
|
|
def xyxyn(self):
|
|
|
|
return self.xyxy / self.orig_shape[[1, 0, 1, 0]]
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=2)
|
|
|
|
def xywhn(self):
|
|
|
|
return self.xywh / self.orig_shape[[1, 0, 1, 0]]
|
|
|
|
|
|
|
|
def cpu(self):
|
|
|
|
boxes = self.boxes.cpu()
|
|
|
|
return Boxes(boxes, self.orig_shape)
|
|
|
|
|
|
|
|
def numpy(self):
|
|
|
|
boxes = self.boxes.numpy()
|
|
|
|
return Boxes(boxes, self.orig_shape)
|
|
|
|
|
|
|
|
def cuda(self):
|
|
|
|
boxes = self.boxes.cuda()
|
|
|
|
return Boxes(boxes, self.orig_shape)
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
boxes = self.boxes.to(*args, **kwargs)
|
|
|
|
return Boxes(boxes, self.orig_shape)
|
|
|
|
|
|
|
|
def pandas(self):
|
|
|
|
LOGGER.info('results.pandas() method not yet implemented')
|
|
|
|
'''
|
|
|
|
new = copy(self) # return copy
|
|
|
|
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
|
|
|
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
|
|
|
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
|
|
|
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
|
|
|
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
|
|
|
return new
|
|
|
|
'''
|
|
|
|
|
|
|
|
@property
|
|
|
|
def shape(self):
|
|
|
|
return self.boxes.shape
|
|
|
|
|
|
|
|
@property
|
|
|
|
def data(self):
|
|
|
|
return self.boxes
|
|
|
|
|
|
|
|
def __len__(self): # override len(results)
|
|
|
|
return len(self.boxes)
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return self.boxes.__str__()
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return (f'Ultralytics YOLO {self.__class__} masks\n' + f'type: {type(self.boxes)}\n' +
|
|
|
|
f'shape: {self.boxes.shape}\n' + f'dtype: {self.boxes.dtype}\n + {self.boxes.__repr__()}')
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
boxes = self.boxes[idx]
|
|
|
|
return Boxes(boxes, self.orig_shape)
|
|
|
|
|
|
|
|
def __getattr__(self, attr):
|
|
|
|
name = self.__class__.__name__
|
|
|
|
raise AttributeError(f"""
|
|
|
|
'{name}' object has no attribute '{attr}'. Valid '{name}' object attributes and properties are:
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
|
|
|
with shape (num_boxes, 6).
|
|
|
|
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
|
|
|
|
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
|
|
|
|
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
|
|
|
|
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
|
|
|
|
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
|
|
|
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
|
|
|
|
""")
|
|
|
|
|
|
|
|
|
|
|
|
class Masks:
|
|
|
|
"""
|
|
|
|
A class for storing and manipulating detection masks.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, masks, orig_shape) -> None:
|
|
|
|
self.masks = masks # N, h, w
|
|
|
|
self.orig_shape = orig_shape
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
def segments(self):
|
|
|
|
return [
|
|
|
|
ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=True)
|
|
|
|
for x in ops.masks2segments(self.masks)]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def shape(self):
|
|
|
|
return self.masks.shape
|
|
|
|
|
|
|
|
@property
|
|
|
|
def data(self):
|
|
|
|
return self.masks
|
|
|
|
|
|
|
|
def cpu(self):
|
|
|
|
masks = self.masks.cpu()
|
|
|
|
return Masks(masks, self.orig_shape)
|
|
|
|
|
|
|
|
def numpy(self):
|
|
|
|
masks = self.masks.numpy()
|
|
|
|
return Masks(masks, self.orig_shape)
|
|
|
|
|
|
|
|
def cuda(self):
|
|
|
|
masks = self.masks.cuda()
|
|
|
|
return Masks(masks, self.orig_shape)
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
masks = self.masks.to(*args, **kwargs)
|
|
|
|
return Masks(masks, self.orig_shape)
|
|
|
|
|
|
|
|
def __len__(self): # override len(results)
|
|
|
|
return len(self.masks)
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return self.masks.__str__()
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return (f'Ultralytics YOLO {self.__class__} masks\n' + f'type: {type(self.masks)}\n' +
|
|
|
|
f'shape: {self.masks.shape}\n' + f'dtype: {self.masks.dtype}\n + {self.masks.__repr__()}')
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
masks = self.masks[idx]
|
|
|
|
return Masks(masks, self.orig_shape)
|
|
|
|
|
|
|
|
def __getattr__(self, attr):
|
|
|
|
name = self.__class__.__name__
|
|
|
|
raise AttributeError(f"""
|
|
|
|
'{name}' object has no attribute '{attr}'. Valid '{name}' object attributes and properties are:
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks.
|
|
|
|
""")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# test examples
|
|
|
|
results = Results(boxes=torch.randn((2, 6)), masks=torch.randn((2, 160, 160)), orig_shape=[640, 640])
|
|
|
|
results = results.cuda()
|
|
|
|
print('--cuda--pass--')
|
|
|
|
results = results.cpu()
|
|
|
|
print('--cpu--pass--')
|
|
|
|
results = results.to('cuda:0')
|
|
|
|
print('--to-cuda--pass--')
|
|
|
|
results = results.to('cpu')
|
|
|
|
print('--to-cpu--pass--')
|
|
|
|
results = results.numpy()
|
|
|
|
print('--numpy--pass--')
|
|
|
|
# box = Boxes(boxes=torch.randn((2, 6)), orig_shape=[5, 5])
|
|
|
|
# box = box.cuda()
|
|
|
|
# box = box.cpu()
|
|
|
|
# box = box.numpy()
|
|
|
|
# for b in box:
|
|
|
|
# print(b)
|