from copy import deepcopy from functools import lru_cache import numpy as np import torch import torchvision.transforms.functional as F from ultralytics.yolo.utils import LOGGER, ops from ultralytics.yolo.utils.plotting import Annotator, colors class Results: """ A class for storing and manipulating inference results. Args: boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. masks (Masks, optional): A Masks object containing the detection masks. probs (torch.Tensor, optional): A tensor containing the detection class probabilities. orig_img (tuple, optional): Original image size. Attributes: boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. masks (Masks, optional): A Masks object containing the detection masks. probs (torch.Tensor, optional): A tensor containing the detection class probabilities. orig_img (tuple, optional): Original image size. data (torch.Tensor): The raw masks tensor """ def __init__(self, boxes=None, masks=None, probs=None, orig_img=None, names=None) -> None: self.orig_img = orig_img self.orig_shape = orig_img.shape[:2] self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks self.probs = probs if probs is not None else None self.names = names self.comp = ['boxes', 'masks', 'probs'] def pandas(self): pass # TODO masks.pandas + boxes.pandas + cls.pandas def __getitem__(self, idx): r = Results(orig_img=self.orig_img) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item)[idx]) return r def update(self, boxes=None, masks=None, probs=None): if boxes is not None: self.boxes = Boxes(boxes, self.orig_shape) if masks is not None: self.masks = Masks(masks, self.orig_shape) if boxes is not None: self.probs = probs def cpu(self): r = Results(orig_img=self.orig_img) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item).cpu()) return r def numpy(self): r = Results(orig_img=self.orig_img) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item).numpy()) return r def cuda(self): r = Results(orig_img=self.orig_img) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item).cuda()) return r def to(self, *args, **kwargs): r = Results(orig_img=self.orig_img) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item).to(*args, **kwargs)) return r def __len__(self): for item in self.comp: if getattr(self, item) is None: continue return len(getattr(self, item)) def __str__(self): str_out = '' for item in self.comp: if getattr(self, item) is None: continue str_out = str_out + getattr(self, item).__str__() return str_out def __repr__(self): str_out = '' for item in self.comp: if getattr(self, item) is None: continue str_out = str_out + getattr(self, item).__repr__() return str_out def __getattr__(self, attr): name = self.__class__.__name__ raise AttributeError(f""" '{name}' object has no attribute '{attr}'. Valid '{name}' object attributes and properties are: Attributes: boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. masks (Masks, optional): A Masks object containing the detection masks. probs (torch.Tensor, optional): A tensor containing the detection class probabilities. orig_shape (tuple, optional): Original image size. """) def visualize(self, show_conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): """ Plots the given result on an input RGB image. Accepts cv2(numpy) or PIL Image Args: show_conf (bool): Show confidence line_width (Float): The line width of boxes. Automatically scaled to img size if not provided font_size (Float): The font size of . Automatically scaled to img size if not provided """ img = deepcopy(self.orig_img) annotator = Annotator(img, line_width, font_size, font, pil, example) boxes = self.boxes masks = self.masks logits = self.probs names = self.names if boxes is not None: for d in reversed(boxes): cls, conf = d.cls.squeeze(), d.conf.squeeze() c = int(cls) label = (f'{names[c]}' if names else f'{c}') + (f'{conf:.2f}' if show_conf else '') annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) if masks is not None: im_gpu = torch.as_tensor(img, dtype=torch.float16).permute(2, 0, 1).flip(0).contiguous() im_gpu = F.resize(im_gpu, masks.data.shape[1:]) / 255 annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im_gpu) if logits is not None: top5i = logits.argsort(0, descending=True)[:5].tolist() # top 5 indices text = f"{', '.join(f'{names[j] if names else j} {logits[j]:.2f}' for j in top5i)}, " annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors return img class Boxes: """ A class for storing and manipulating detection boxes. Args: boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, with shape (num_boxes, 6). The last two columns should contain confidence and class values. orig_shape (tuple): Original image size, in the format (height, width). Attributes: boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, with shape (num_boxes, 6). orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width). Properties: xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format. conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes. cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes. xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format. xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size. xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size. data (torch.Tensor): The raw bboxes tensor """ def __init__(self, boxes, orig_shape) -> None: if boxes.ndim == 1: boxes = boxes[None, :] n = boxes.shape[-1] assert n in {6, 7}, f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls # TODO self.is_track = n == 7 self.boxes = boxes self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \ else np.asarray(orig_shape) @property def xyxy(self): return self.boxes[:, :4] @property def conf(self): return self.boxes[:, -2] @property def cls(self): return self.boxes[:, -1] @property def id(self): return self.boxes[:, -3] if self.is_track else None @property @lru_cache(maxsize=2) # maxsize 1 should suffice def xywh(self): return ops.xyxy2xywh(self.xyxy) @property @lru_cache(maxsize=2) def xyxyn(self): return self.xyxy / self.orig_shape[[1, 0, 1, 0]] @property @lru_cache(maxsize=2) def xywhn(self): return self.xywh / self.orig_shape[[1, 0, 1, 0]] def cpu(self): boxes = self.boxes.cpu() return Boxes(boxes, self.orig_shape) def numpy(self): boxes = self.boxes.numpy() return Boxes(boxes, self.orig_shape) def cuda(self): boxes = self.boxes.cuda() return Boxes(boxes, self.orig_shape) def to(self, *args, **kwargs): boxes = self.boxes.to(*args, **kwargs) return Boxes(boxes, self.orig_shape) def pandas(self): LOGGER.info('results.pandas() method not yet implemented') ''' new = copy(self) # return copy ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) return new ''' @property def shape(self): return self.boxes.shape @property def data(self): return self.boxes def __len__(self): # override len(results) return len(self.boxes) def __str__(self): return self.boxes.__str__() def __repr__(self): return (f'Ultralytics YOLO {self.__class__} masks\n' + f'type: {type(self.boxes)}\n' + f'shape: {self.boxes.shape}\n' + f'dtype: {self.boxes.dtype}\n + {self.boxes.__repr__()}') def __getitem__(self, idx): boxes = self.boxes[idx] return Boxes(boxes, self.orig_shape) def __getattr__(self, attr): name = self.__class__.__name__ raise AttributeError(f""" '{name}' object has no attribute '{attr}'. Valid '{name}' object attributes and properties are: Attributes: boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, with shape (num_boxes, 6). orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width). Properties: xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format. conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes. cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes. xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format. xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size. xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size. """) class Masks: """ A class for storing and manipulating detection masks. Args: masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). orig_shape (tuple): Original image size, in the format (height, width). Attributes: masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). orig_shape (tuple): Original image size, in the format (height, width). Properties: segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks. """ def __init__(self, masks, orig_shape) -> None: self.masks = masks # N, h, w self.orig_shape = orig_shape @property @lru_cache(maxsize=1) def segments(self): return [ ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=True) for x in ops.masks2segments(self.masks)] @property def shape(self): return self.masks.shape @property def data(self): return self.masks def cpu(self): masks = self.masks.cpu() return Masks(masks, self.orig_shape) def numpy(self): masks = self.masks.numpy() return Masks(masks, self.orig_shape) def cuda(self): masks = self.masks.cuda() return Masks(masks, self.orig_shape) def to(self, *args, **kwargs): masks = self.masks.to(*args, **kwargs) return Masks(masks, self.orig_shape) def __len__(self): # override len(results) return len(self.masks) def __str__(self): return self.masks.__str__() def __repr__(self): return (f'Ultralytics YOLO {self.__class__} masks\n' + f'type: {type(self.masks)}\n' + f'shape: {self.masks.shape}\n' + f'dtype: {self.masks.dtype}\n + {self.masks.__repr__()}') def __getitem__(self, idx): masks = self.masks[idx] return Masks(masks, self.orig_shape) def __getattr__(self, attr): name = self.__class__.__name__ raise AttributeError(f""" '{name}' object has no attribute '{attr}'. Valid '{name}' object attributes and properties are: Attributes: masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). orig_shape (tuple): Original image size, in the format (height, width). Properties: segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks. """) if __name__ == '__main__': # test examples results = Results(boxes=torch.randn((2, 6)), masks=torch.randn((2, 160, 160)), orig_shape=[640, 640]) results = results.cuda() print('--cuda--pass--') results = results.cpu() print('--cpu--pass--') results = results.to('cuda:0') print('--to-cuda--pass--') results = results.to('cpu') print('--to-cpu--pass--') results = results.numpy() print('--numpy--pass--') # box = Boxes(boxes=torch.randn((2, 6)), orig_shape=[5, 5]) # box = box.cuda() # box = box.cpu() # box = box.numpy() # for b in box: # print(b)