You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

285 lines
9.4 KiB

from functools import lru_cache
import numpy as np
import torch
from ultralytics.yolo.utils import LOGGER, ops
class Results:
"""
A class for storing and manipulating inference results.
Args:
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
orig_shape (tuple, optional): Original image size.
Attributes:
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
orig_shape (tuple, optional): Original image size.
"""
def __init__(self, boxes=None, masks=None, probs=None, orig_shape=None) -> None:
self.boxes = Boxes(boxes, orig_shape) if boxes is not None else None # native size boxes
self.masks = Masks(masks, orig_shape) if masks is not None else None # native size or imgsz masks
self.probs = probs.softmax(0) if probs is not None else None
self.orig_shape = orig_shape
self.comp = ["boxes", "masks", "probs"]
def pandas(self):
pass
# TODO masks.pandas + boxes.pandas + cls.pandas
def __getitem__(self, idx):
r = Results(orig_shape=self.orig_shape)
for item in self.comp:
if getattr(self, item) is None:
continue
setattr(r, item, getattr(self, item)[idx])
return r
def cpu(self):
r = Results(orig_shape=self.orig_shape)
for item in self.comp:
if getattr(self, item) is None:
continue
setattr(r, item, getattr(self, item).cpu())
return r
def numpy(self):
r = Results(orig_shape=self.orig_shape)
for item in self.comp:
if getattr(self, item) is None:
continue
setattr(r, item, getattr(self, item).numpy())
return r
def cuda(self):
r = Results(orig_shape=self.orig_shape)
for item in self.comp:
if getattr(self, item) is None:
continue
setattr(r, item, getattr(self, item).cuda())
return r
def to(self, *args, **kwargs):
r = Results(orig_shape=self.orig_shape)
for item in self.comp:
if getattr(self, item) is None:
continue
setattr(r, item, getattr(self, item).to(*args, **kwargs))
return r
def __len__(self):
for item in self.comp:
if getattr(self, item) is None:
continue
return len(getattr(self, item))
def __str__(self):
return self.__repr__()
def __repr__(self):
s = f'Ultralytics YOLO {self.__class__} instance\n' # string
if self.boxes is not None:
s = s + self.boxes.__repr__() + '\n'
if self.masks is not None:
s = s + self.masks.__repr__() + '\n'
if self.probs is not None:
s = s + self.probs.__repr__()
s += f'original size: {self.orig_shape}\n'
return s
class Boxes:
"""
A class for storing and manipulating detection boxes.
Args:
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6). The last two columns should contain confidence and class values.
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6).
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
Properties:
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
"""
def __init__(self, boxes, orig_shape) -> None:
if boxes.ndim == 1:
boxes = boxes[None, :]
assert boxes.shape[-1] == 6 # xyxy, conf, cls
self.boxes = boxes
self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \
else np.asarray(orig_shape)
@property
def xyxy(self):
return self.boxes[:, :4]
@property
def conf(self):
return self.boxes[:, -2]
@property
def cls(self):
return self.boxes[:, -1]
@property
@lru_cache(maxsize=2) # maxsize 1 should suffice
def xywh(self):
return ops.xyxy2xywh(self.xyxy)
@property
@lru_cache(maxsize=2)
def xyxyn(self):
return self.xyxy / self.orig_shape[[1, 0, 1, 0]]
@property
@lru_cache(maxsize=2)
def xywhn(self):
return self.xywh / self.orig_shape[[1, 0, 1, 0]]
def cpu(self):
boxes = self.boxes.cpu()
return Boxes(boxes, self.orig_shape)
def numpy(self):
boxes = self.boxes.numpy()
return Boxes(boxes, self.orig_shape)
def cuda(self):
boxes = self.boxes.cuda()
return Boxes(boxes, self.orig_shape)
def to(self, *args, **kwargs):
boxes = self.boxes.to(*args, **kwargs)
return Boxes(boxes, self.orig_shape)
def pandas(self):
LOGGER.info('results.pandas() method not yet implemented')
'''
new = copy(self) # return copy
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
return new
'''
@property
def shape(self):
return self.boxes.shape
def __len__(self): # override len(results)
return len(self.boxes)
def __str__(self):
return self.__repr__()
def __repr__(self):
return (f"Ultralytics YOLO {self.__class__} masks\n" + f"type: {type(self.boxes)}\n" +
f"shape: {self.boxes.shape}\n" + f"dtype: {self.boxes.dtype}")
def __getitem__(self, idx):
boxes = self.boxes[idx]
return Boxes(boxes, self.orig_shape)
class Masks:
"""
A class for storing and manipulating detection masks.
Args:
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
orig_shape (tuple): Original image size, in the format (height, width).
Properties:
segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks.
"""
def __init__(self, masks, orig_shape) -> None:
self.masks = masks # N, h, w
self.orig_shape = orig_shape
@property
@lru_cache(maxsize=1)
def segments(self):
return [
ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=True)
for x in reversed(ops.masks2segments(self.masks))]
@property
def shape(self):
return self.masks.shape
def cpu(self):
masks = self.masks.cpu()
return Masks(masks, self.orig_shape)
def numpy(self):
masks = self.masks.numpy()
return Masks(masks, self.orig_shape)
def cuda(self):
masks = self.masks.cuda()
return Masks(masks, self.orig_shape)
def to(self, *args, **kwargs):
masks = self.masks.to(*args, **kwargs)
return Masks(masks, self.orig_shape)
def __len__(self): # override len(results)
return len(self.masks)
def __str__(self):
return self.__repr__()
def __repr__(self):
return (f"Ultralytics YOLO {self.__class__} masks\n" + f"type: {type(self.masks)}\n" +
f"shape: {self.masks.shape}\n" + f"dtype: {self.masks.dtype}")
def __getitem__(self, idx):
masks = self.masks[idx]
return Masks(masks, self.im_shape, self.orig_shape)
if __name__ == "__main__":
# test examples
results = Results(boxes=torch.randn((2, 6)), masks=torch.randn((2, 160, 160)), orig_shape=[640, 640])
results = results.cuda()
print("--cuda--pass--")
results = results.cpu()
print("--cpu--pass--")
results = results.to("cuda:0")
print("--to-cuda--pass--")
results = results.to("cpu")
print("--to-cpu--pass--")
results = results.numpy()
print("--numpy--pass--")
# box = Boxes(boxes=torch.randn((2, 6)), orig_shape=[5, 5])
# box = box.cuda()
# box = box.cpu()
# box = box.numpy()
# for b in box:
# print(b)