You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
104 lines
3.6 KiB
104 lines
3.6 KiB
2 years ago
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
2 years ago
|
|
||
2 years ago
|
import matplotlib.image as mpimg
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
2 years ago
|
from ultralytics.utils import LOGGER, TESTS_RUNNING
|
||
|
from ultralytics.utils.torch_utils import model_info_for_loggers
|
||
2 years ago
|
|
||
|
try:
|
||
|
import neptune
|
||
|
from neptune.types import File
|
||
|
|
||
|
assert not TESTS_RUNNING # do not log pytest
|
||
|
assert hasattr(neptune, '__version__')
|
||
|
except (ImportError, AssertionError):
|
||
|
neptune = None
|
||
|
|
||
|
run = None # NeptuneAI experiment logger instance
|
||
|
|
||
|
|
||
|
def _log_scalars(scalars, step=0):
|
||
|
"""Log scalars to the NeptuneAI experiment logger."""
|
||
|
if run:
|
||
|
for k, v in scalars.items():
|
||
|
run[k].append(value=v, step=step)
|
||
|
|
||
|
|
||
|
def _log_images(imgs_dict, group=''):
|
||
|
"""Log scalars to the NeptuneAI experiment logger."""
|
||
|
if run:
|
||
|
for k, v in imgs_dict.items():
|
||
|
run[f'{group}/{k}'].upload(File(v))
|
||
|
|
||
|
|
||
|
def _log_plot(title, plot_path):
|
||
|
"""Log plots to the NeptuneAI experiment logger."""
|
||
|
"""
|
||
|
Log image as plot in the plot section of NeptuneAI
|
||
|
|
||
|
arguments:
|
||
|
title (str) Title of the plot
|
||
|
plot_path (PosixPath or str) Path to the saved image file
|
||
|
"""
|
||
|
img = mpimg.imread(plot_path)
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks
|
||
|
ax.imshow(img)
|
||
|
run[f'Plots/{title}'].upload(fig)
|
||
|
|
||
|
|
||
|
def on_pretrain_routine_start(trainer):
|
||
|
"""Callback function called before the training routine starts."""
|
||
|
try:
|
||
|
global run
|
||
|
run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8'])
|
||
|
run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()}
|
||
|
except Exception as e:
|
||
|
LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}')
|
||
|
|
||
|
|
||
|
def on_train_epoch_end(trainer):
|
||
|
"""Callback function called at end of each training epoch."""
|
||
|
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1)
|
||
|
_log_scalars(trainer.lr, trainer.epoch + 1)
|
||
|
if trainer.epoch == 1:
|
||
|
_log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic')
|
||
|
|
||
|
|
||
|
def on_fit_epoch_end(trainer):
|
||
|
"""Callback function called at end of each fit (train+val) epoch."""
|
||
|
if run and trainer.epoch == 0:
|
||
2 years ago
|
run['Configuration/Model'] = model_info_for_loggers(trainer)
|
||
2 years ago
|
_log_scalars(trainer.metrics, trainer.epoch + 1)
|
||
|
|
||
|
|
||
|
def on_val_end(validator):
|
||
|
"""Callback function called at end of each validation."""
|
||
|
if run:
|
||
|
# Log val_labels and val_pred
|
||
|
_log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation')
|
||
|
|
||
|
|
||
|
def on_train_end(trainer):
|
||
|
"""Callback function called at end of training."""
|
||
|
if run:
|
||
|
# Log final results, CM matrix + PR plots
|
||
2 years ago
|
files = [
|
||
|
'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png',
|
||
|
*(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
||
2 years ago
|
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
|
||
|
for f in files:
|
||
|
_log_plot(title=f.stem, plot_path=f)
|
||
|
# Log the final model
|
||
|
run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str(
|
||
|
trainer.best)))
|
||
|
|
||
|
|
||
|
callbacks = {
|
||
|
'on_pretrain_routine_start': on_pretrain_routine_start,
|
||
|
'on_train_epoch_end': on_train_epoch_end,
|
||
|
'on_fit_epoch_end': on_fit_epoch_end,
|
||
|
'on_val_end': on_val_end,
|
||
|
'on_train_end': on_train_end} if neptune else {}
|