`ultralytics 8.0.83` Neptune AI logging addition (#2130)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Snyk bot <snyk-bot@snyk.io> Co-authored-by: Toutatis64 <Toutatis64@users.noreply.github.com> Co-authored-by: M. Tolga Cangöz <46008593+standardAI@users.noreply.github.com> Co-authored-by: Talia Bender <85292283+taliabender@users.noreply.github.com> Co-authored-by: Ophélie Le Mentec <17216799+ouphi@users.noreply.github.com> Co-authored-by: Kadir Şahin <68073829+ssahinnkadir@users.noreply.github.com> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>single_channel
parent
55a03ad85f
commit
6c082ebd6f
@ -0,0 +1,105 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
import matplotlib.image as mpimg
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
|
||||
try:
|
||||
import neptune
|
||||
from neptune.types import File
|
||||
|
||||
assert not TESTS_RUNNING # do not log pytest
|
||||
assert hasattr(neptune, '__version__')
|
||||
except (ImportError, AssertionError):
|
||||
neptune = None
|
||||
|
||||
run = None # NeptuneAI experiment logger instance
|
||||
|
||||
|
||||
def _log_scalars(scalars, step=0):
|
||||
"""Log scalars to the NeptuneAI experiment logger."""
|
||||
if run:
|
||||
for k, v in scalars.items():
|
||||
run[k].append(value=v, step=step)
|
||||
|
||||
|
||||
def _log_images(imgs_dict, group=''):
|
||||
"""Log scalars to the NeptuneAI experiment logger."""
|
||||
if run:
|
||||
for k, v in imgs_dict.items():
|
||||
run[f'{group}/{k}'].upload(File(v))
|
||||
|
||||
|
||||
def _log_plot(title, plot_path):
|
||||
"""Log plots to the NeptuneAI experiment logger."""
|
||||
"""
|
||||
Log image as plot in the plot section of NeptuneAI
|
||||
|
||||
arguments:
|
||||
title (str) Title of the plot
|
||||
plot_path (PosixPath or str) Path to the saved image file
|
||||
"""
|
||||
img = mpimg.imread(plot_path)
|
||||
fig = plt.figure()
|
||||
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks
|
||||
ax.imshow(img)
|
||||
run[f'Plots/{title}'].upload(fig)
|
||||
|
||||
|
||||
def on_pretrain_routine_start(trainer):
|
||||
"""Callback function called before the training routine starts."""
|
||||
try:
|
||||
global run
|
||||
run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8'])
|
||||
run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()}
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}')
|
||||
|
||||
|
||||
def on_train_epoch_end(trainer):
|
||||
"""Callback function called at end of each training epoch."""
|
||||
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1)
|
||||
_log_scalars(trainer.lr, trainer.epoch + 1)
|
||||
if trainer.epoch == 1:
|
||||
_log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic')
|
||||
|
||||
|
||||
def on_fit_epoch_end(trainer):
|
||||
"""Callback function called at end of each fit (train+val) epoch."""
|
||||
if run and trainer.epoch == 0:
|
||||
model_info = {
|
||||
'parameters': get_num_params(trainer.model),
|
||||
'GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
run['Configuration/Model'] = model_info
|
||||
_log_scalars(trainer.metrics, trainer.epoch + 1)
|
||||
|
||||
|
||||
def on_val_end(validator):
|
||||
"""Callback function called at end of each validation."""
|
||||
if run:
|
||||
# Log val_labels and val_pred
|
||||
_log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation')
|
||||
|
||||
|
||||
def on_train_end(trainer):
|
||||
"""Callback function called at end of training."""
|
||||
if run:
|
||||
# Log final results, CM matrix + PR plots
|
||||
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
||||
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
|
||||
for f in files:
|
||||
_log_plot(title=f.stem, plot_path=f)
|
||||
# Log the final model
|
||||
run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str(
|
||||
trainer.best)))
|
||||
run.stop()
|
||||
|
||||
|
||||
callbacks = {
|
||||
'on_pretrain_routine_start': on_pretrain_routine_start,
|
||||
'on_train_epoch_end': on_train_epoch_end,
|
||||
'on_fit_epoch_end': on_fit_epoch_end,
|
||||
'on_val_end': on_val_end,
|
||||
'on_train_end': on_train_end} if neptune else {}
|
Loading…
Reference in new issue