|
|
|
import contextlib
|
|
|
|
import inspect
|
|
|
|
import logging.config
|
|
|
|
import os
|
|
|
|
import platform
|
|
|
|
import sys
|
|
|
|
import tempfile
|
|
|
|
import threading
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
# Constants
|
|
|
|
FILE = Path(__file__).resolve()
|
|
|
|
ROOT = FILE.parents[2] # YOLO
|
|
|
|
DEFAULT_CONFIG = ROOT / "yolo/configs/default.yaml"
|
|
|
|
RANK = int(os.getenv('RANK', -1))
|
|
|
|
DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory
|
|
|
|
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
|
|
|
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
|
|
|
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
|
|
|
|
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
|
|
|
|
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format
|
|
|
|
LOGGING_NAME = 'yolov5'
|
|
|
|
HELP_MSG = \
|
|
|
|
"""
|
|
|
|
Usage examples for running YOLOv8:
|
|
|
|
|
|
|
|
1. Install the ultralytics package:
|
|
|
|
|
|
|
|
pip install ultralytics
|
|
|
|
|
|
|
|
2. Use the Python SDK:
|
|
|
|
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
model = YOLO.new('yolov8n.yaml') # create a new model from scratch
|
|
|
|
model = YOLO.load('yolov8n.pt') # load a pretrained model (recommended for best training results)
|
|
|
|
results = model.train(data='coco128.yaml') # train the model
|
|
|
|
results = model.val() # evaluate model performance on the validation set
|
|
|
|
results = model.predict(source='bus.jpg') # predict on an image
|
|
|
|
success = model.export(format='onnx') # export the model to ONNX format
|
|
|
|
|
|
|
|
3. Use the command line interface (CLI):
|
|
|
|
|
|
|
|
yolo task=detect mode=train model=yolov8n.yaml args...
|
|
|
|
classify predict yolov8n-cls.yaml args...
|
|
|
|
segment val yolov8n-seg.yaml args...
|
|
|
|
export yolov8n.pt format=onnx args...
|
|
|
|
|
|
|
|
Docs: https://docs.ultralytics.com
|
|
|
|
Community: https://community.ultralytics.com
|
|
|
|
GitHub: https://github.com/ultralytics/ultralytics
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Settings
|
|
|
|
# torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
|
|
|
# np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
|
|
|
pd.options.display.max_columns = 10
|
|
|
|
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
|
|
|
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
|
|
|
|
|
|
|
|
|
|
|
|
def is_colab():
|
|
|
|
"""
|
|
|
|
Check if the current script is running inside a Google Colab notebook.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: True if running inside a Colab notebook, False otherwise.
|
|
|
|
"""
|
|
|
|
# Check if the google.colab module is present in sys.modules
|
|
|
|
return 'google.colab' in sys.modules
|
|
|
|
|
|
|
|
|
|
|
|
def is_kaggle():
|
|
|
|
"""
|
|
|
|
Check if the current script is running inside a Kaggle kernel.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: True if running inside a Kaggle kernel, False otherwise.
|
|
|
|
"""
|
|
|
|
return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
|
|
|
|
|
|
|
|
|
|
|
|
def is_jupyter_notebook():
|
|
|
|
"""
|
|
|
|
Check if the current script is running inside a Jupyter Notebook.
|
|
|
|
Verified on Colab, Jupyterlab, Kaggle, Paperspace.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: True if running inside a Jupyter Notebook, False otherwise.
|
|
|
|
"""
|
|
|
|
# Check if the get_ipython function exists
|
|
|
|
# (it does not exist when running as a standalone script)
|
|
|
|
try:
|
|
|
|
from IPython import get_ipython
|
|
|
|
return get_ipython() is not None
|
|
|
|
except ImportError:
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def is_docker() -> bool:
|
|
|
|
"""
|
|
|
|
Determine if the script is running inside a Docker container.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: True if the script is running inside a Docker container, False otherwise.
|
|
|
|
"""
|
|
|
|
with open('/proc/self/cgroup') as f:
|
|
|
|
return 'docker' in f.read()
|
|
|
|
|
|
|
|
|
|
|
|
def is_dir_writeable(dir_path: str) -> bool:
|
|
|
|
"""
|
|
|
|
Check if a directory is writeable.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dir_path (str): The path to the directory.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: True if the directory is writeable, False otherwise.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
with tempfile.TemporaryFile(dir=dir_path):
|
|
|
|
pass
|
|
|
|
return True
|
|
|
|
except OSError:
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def get_default_args(func):
|
|
|
|
# Get func() default arguments
|
|
|
|
signature = inspect.signature(func)
|
|
|
|
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
|
|
|
|
|
|
|
|
|
|
|
|
def get_user_config_dir(sub_dir='Ultralytics'):
|
|
|
|
"""
|
|
|
|
Get the user config directory.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sub_dir (str): The name of the subdirectory to create.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Path: The path to the user config directory.
|
|
|
|
"""
|
|
|
|
# Get the operating system name
|
|
|
|
os_name = platform.system()
|
|
|
|
|
|
|
|
# Return the appropriate config directory for each operating system
|
|
|
|
if os_name == 'Windows':
|
|
|
|
path = Path.home() / 'AppData' / 'Roaming' / sub_dir
|
|
|
|
elif os_name == 'Darwin': # macOS
|
|
|
|
path = Path.home() / 'Library' / 'Application Support' / sub_dir
|
|
|
|
elif os_name == 'Linux':
|
|
|
|
path = Path.home() / '.config' / sub_dir
|
|
|
|
else:
|
|
|
|
raise ValueError(f'Unsupported operating system: {os_name}')
|
|
|
|
|
|
|
|
# GCP and AWS lambda fix, only /tmp is writeable
|
|
|
|
if not is_dir_writeable(path.parent):
|
|
|
|
path = Path('/tmp') / sub_dir
|
|
|
|
|
|
|
|
# Create the subdirectory if it does not exist
|
|
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
return path
|
|
|
|
|
|
|
|
|
|
|
|
USER_CONFIG_DIR = get_user_config_dir() # Ultralytics settings dir
|
|
|
|
|
|
|
|
|
|
|
|
def emojis(str=''):
|
|
|
|
# Return platform-dependent emoji-safe version of string
|
|
|
|
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
|
|
|
|
|
|
|
|
|
|
|
def colorstr(*input):
|
|
|
|
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
|
|
|
*args, string = input if len(input) > 1 else ("blue", "bold", input[0]) # color arguments, string
|
|
|
|
colors = {
|
|
|
|
"black": "\033[30m", # basic colors
|
|
|
|
"red": "\033[31m",
|
|
|
|
"green": "\033[32m",
|
|
|
|
"yellow": "\033[33m",
|
|
|
|
"blue": "\033[34m",
|
|
|
|
"magenta": "\033[35m",
|
|
|
|
"cyan": "\033[36m",
|
|
|
|
"white": "\033[37m",
|
|
|
|
"bright_black": "\033[90m", # bright colors
|
|
|
|
"bright_red": "\033[91m",
|
|
|
|
"bright_green": "\033[92m",
|
|
|
|
"bright_yellow": "\033[93m",
|
|
|
|
"bright_blue": "\033[94m",
|
|
|
|
"bright_magenta": "\033[95m",
|
|
|
|
"bright_cyan": "\033[96m",
|
|
|
|
"bright_white": "\033[97m",
|
|
|
|
"end": "\033[0m", # misc
|
|
|
|
"bold": "\033[1m",
|
|
|
|
"underline": "\033[4m",}
|
|
|
|
return "".join(colors[x] for x in args) + f"{string}" + colors["end"]
|
|
|
|
|
|
|
|
|
|
|
|
def set_logging(name=LOGGING_NAME, verbose=True):
|
|
|
|
# sets up logging for the given name
|
|
|
|
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
|
|
|
|
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
|
|
|
|
logging.config.dictConfig({
|
|
|
|
"version": 1,
|
|
|
|
"disable_existing_loggers": False,
|
|
|
|
"formatters": {
|
|
|
|
name: {
|
|
|
|
"format": "%(message)s"}},
|
|
|
|
"handlers": {
|
|
|
|
name: {
|
|
|
|
"class": "logging.StreamHandler",
|
|
|
|
"formatter": name,
|
|
|
|
"level": level,}},
|
|
|
|
"loggers": {
|
|
|
|
name: {
|
|
|
|
"level": level,
|
|
|
|
"handlers": [name],
|
|
|
|
"propagate": False,}}})
|
|
|
|
|
|
|
|
|
|
|
|
set_logging(LOGGING_NAME) # run before defining LOGGER
|
|
|
|
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
|
|
|
if platform.system() == 'Windows':
|
|
|
|
for fn in LOGGER.info, LOGGER.warning:
|
|
|
|
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
|
|
|
|
|
|
|
|
|
|
|
class TryExcept(contextlib.ContextDecorator):
|
|
|
|
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
|
|
|
def __init__(self, msg=''):
|
|
|
|
self.msg = msg
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def __exit__(self, exc_type, value, traceback):
|
|
|
|
if value:
|
|
|
|
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
def threaded(func):
|
|
|
|
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
|
|
|
def wrapper(*args, **kwargs):
|
|
|
|
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
|
|
|
thread.start()
|
|
|
|
return thread
|
|
|
|
|
|
|
|
return wrapper
|