You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

207 lines
7.3 KiB

import contextlib
import inspect
import logging.config
import os
import platform
import sys
import threading
from pathlib import Path
import cv2
import IPython
import pandas as pd
# Constants
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2] # YOLO
DEFAULT_CONFIG = ROOT / "yolo/configs/default.yaml"
RANK = int(os.getenv('RANK', -1))
DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format
LOGGING_NAME = 'yolov5'
HELP_MSG = \
"""
Please refer to below Usage examples for help running YOLOv8:
Install:
pip install ultralytics
Python SDK:
from ultralytics import YOLO
model = YOLO.new('yolov8n.yaml') # create a new model from scratch
model = YOLO.load('yolov8n.pt') # load a pretrained model (recommended for best training results)
results = model.train(data='coco128.yaml')
results = model.val()
results = model.predict(source='bus.jpg')
success = model.export(format='onnx')
CLI:
yolo task=detect mode=train model=yolov8n.yaml args...
classify predict yolov8n-cls.yaml args...
segment val yolov8n-seg.yaml args...
export yolov8n.pt format=onnx args...
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Settings
# torch.set_printoptions(linewidth=320, precision=5, profile='long')
# np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
pd.options.display.max_columns = 10
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
def is_colab():
# Is environment a Google Colab instance?
return 'google.colab' in sys.modules
def is_kaggle():
# Is environment a Kaggle Notebook?
return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
def is_notebook():
# Is environment a Jupyter notebook? Verified on Colab, Jupyterlab, Kaggle, Paperspace
ipython_type = str(type(IPython.get_ipython()))
return 'colab' in ipython_type or 'zmqshell' in ipython_type
def is_docker() -> bool:
"""Check if the process runs inside a docker container."""
if Path("/.dockerenv").exists():
return True
try: # check if docker is in control groups
with open("/proc/self/cgroup") as file:
return any("docker" in line for line in file)
except OSError:
return False
def is_writeable(dir, test=False):
# Return True if directory has write permissions, test opening a file with write permissions if test=True
if not test:
return os.access(dir, os.W_OK) # possible issues on Windows
file = Path(dir) / 'tmp.txt'
try:
with open(file, 'w'): # open file with write permissions
pass
file.unlink() # remove file
return True
except OSError:
return False
def get_default_args(func):
# Get func() default arguments
signature = inspect.signature(func)
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
env = os.getenv(env_var)
if env:
path = Path(env) # use environment variable
else:
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
path.mkdir(exist_ok=True) # make if required
return path
USER_CONFIG_DIR = user_config_dir() # Ultralytics settings dir
def emojis(str=''):
# Return platform-dependent emoji-safe version of string
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
def colorstr(*input):
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
*args, string = input if len(input) > 1 else ("blue", "bold", input[0]) # color arguments, string
colors = {
"black": "\033[30m", # basic colors
"red": "\033[31m",
"green": "\033[32m",
"yellow": "\033[33m",
"blue": "\033[34m",
"magenta": "\033[35m",
"cyan": "\033[36m",
"white": "\033[37m",
"bright_black": "\033[90m", # bright colors
"bright_red": "\033[91m",
"bright_green": "\033[92m",
"bright_yellow": "\033[93m",
"bright_blue": "\033[94m",
"bright_magenta": "\033[95m",
"bright_cyan": "\033[96m",
"bright_white": "\033[97m",
"end": "\033[0m", # misc
"bold": "\033[1m",
"underline": "\033[4m",}
return "".join(colors[x] for x in args) + f"{string}" + colors["end"]
def set_logging(name=LOGGING_NAME, verbose=True):
# sets up logging for the given name
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
logging.config.dictConfig({
"version": 1,
"disable_existing_loggers": False,
"formatters": {
name: {
"format": "%(message)s"}},
"handlers": {
name: {
"class": "logging.StreamHandler",
"formatter": name,
"level": level,}},
"loggers": {
name: {
"level": level,
"handlers": [name],
"propagate": False,}}})
set_logging(LOGGING_NAME) # run before defining LOGGER
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
if platform.system() == 'Windows':
for fn in LOGGER.info, LOGGER.warning:
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
class TryExcept(contextlib.ContextDecorator):
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
def __init__(self, msg=''):
self.msg = msg
def __enter__(self):
pass
def __exit__(self, exc_type, value, traceback):
if value:
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
return True
def threaded(func):
# Multi-threads a target function and returns thread. Usage: @threaded decorator
def wrapper(*args, **kwargs):
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
thread.start()
return thread
return wrapper