|
|
|
import hydra
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from ultralytics.nn.tasks import SegmentationModel
|
|
|
|
from ultralytics.yolo import v8
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG
|
|
|
|
from ultralytics.yolo.utils.loss import BboxLoss
|
|
|
|
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
|
|
|
|
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
|
|
|
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
|
|
|
|
from ultralytics.yolo.utils.torch_utils import de_parallel
|
|
|
|
|
|
|
|
|
|
|
|
# BaseTrainer python usage
|
|
|
|
class SegmentationTrainer(v8.detect.DetectionTrainer):
|
|
|
|
|
|
|
|
def load_model(self, model_cfg=None, weights=None, verbose=True):
|
|
|
|
model = SegmentationModel(model_cfg or getattr(weights, 'yaml', None) or weights['model'].yaml,
|
|
|
|
ch=3,
|
|
|
|
nc=self.data["nc"],
|
|
|
|
verbose=verbose)
|
|
|
|
if weights:
|
|
|
|
model.load(weights['model'] if isinstance(weights, dict) else weights, verbose)
|
|
|
|
return model
|
|
|
|
|
|
|
|
def get_validator(self):
|
|
|
|
self.loss_names = 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss'
|
|
|
|
return v8.segment.SegmentationValidator(self.test_loader,
|
|
|
|
save_dir=self.save_dir,
|
|
|
|
logger=self.console,
|
|
|
|
args=self.args)
|
|
|
|
|
|
|
|
def criterion(self, preds, batch):
|
|
|
|
if not hasattr(self, 'compute_loss'):
|
|
|
|
self.compute_loss = SegLoss(de_parallel(self.model), overlap=self.args.overlap_mask)
|
|
|
|
return self.compute_loss(preds, batch)
|
|
|
|
|
|
|
|
def plot_training_samples(self, batch, ni):
|
|
|
|
images = batch["img"]
|
|
|
|
masks = batch["masks"]
|
|
|
|
cls = batch["cls"].squeeze(-1)
|
|
|
|
bboxes = batch["bboxes"]
|
|
|
|
paths = batch["im_file"]
|
|
|
|
batch_idx = batch["batch_idx"]
|
|
|
|
plot_images(images, batch_idx, cls, bboxes, masks, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg")
|
|
|
|
|
|
|
|
def plot_metrics(self):
|
|
|
|
plot_results(file=self.csv, segment=True) # save results.png
|
|
|
|
|
|
|
|
|
|
|
|
# Criterion class for computing training losses
|
|
|
|
class SegLoss:
|
|
|
|
|
|
|
|
def __init__(self, model, overlap=True): # model must be de-paralleled
|
|
|
|
|
|
|
|
device = next(model.parameters()).device # get model device
|
|
|
|
h = model.args # hyperparameters
|
|
|
|
|
|
|
|
m = model.model[-1] # Detect() module
|
|
|
|
self.bce = nn.BCEWithLogitsLoss(reduction='none')
|
|
|
|
self.hyp = h
|
|
|
|
self.stride = m.stride # model strides
|
|
|
|
self.nc = m.nc # number of classes
|
|
|
|
self.no = m.no
|
|
|
|
self.nm = m.nm # number of masks
|
|
|
|
self.reg_max = m.reg_max
|
|
|
|
self.overlap = overlap
|
|
|
|
self.device = device
|
|
|
|
|
|
|
|
self.use_dfl = m.reg_max > 1
|
|
|
|
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
|
|
|
|
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
|
|
|
|
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
|
|
|
|
|
|
|
|
def preprocess(self, targets, batch_size, scale_tensor):
|
|
|
|
if targets.shape[0] == 0:
|
|
|
|
out = torch.zeros(batch_size, 0, 5, device=self.device)
|
|
|
|
else:
|
|
|
|
i = targets[:, 0] # image index
|
|
|
|
_, counts = i.unique(return_counts=True)
|
|
|
|
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
|
|
|
|
for j in range(batch_size):
|
|
|
|
matches = i == j
|
|
|
|
n = matches.sum()
|
|
|
|
if n:
|
|
|
|
out[j, :n] = targets[matches, 1:]
|
|
|
|
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
|
|
|
return out
|
|
|
|
|
|
|
|
def bbox_decode(self, anchor_points, pred_dist):
|
|
|
|
if self.use_dfl:
|
|
|
|
b, a, c = pred_dist.shape # batch, anchors, channels
|
|
|
|
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
|
|
|
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
|
|
|
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
|
|
|
|
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
|
|
|
|
|
|
|
def __call__(self, preds, batch):
|
|
|
|
loss = torch.zeros(4, device=self.device) # box, cls, dfl
|
|
|
|
feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
|
|
|
|
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
|
|
|
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
|
|
|
(self.reg_max * 4, self.nc), 1)
|
|
|
|
|
|
|
|
# b, grids, ..
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
|
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
|
|
|
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
|
|
|
|
|
|
|
|
dtype = pred_scores.dtype
|
|
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
|
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
|
|
|
|
|
|
|
# targets
|
|
|
|
batch_idx = batch["batch_idx"].view(-1, 1)
|
|
|
|
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
|
|
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
|
|
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
|
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
|
|
|
|
|
|
|
masks = batch["masks"].to(self.device).float()
|
|
|
|
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
|
|
|
|
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
|
|
|
|
|
|
|
|
# pboxes
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
|
|
|
|
|
|
|
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
|
|
|
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
|
|
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
|
|
|
|
|
|
|
|
target_scores_sum = target_scores.sum()
|
|
|
|
|
|
|
|
# cls loss
|
|
|
|
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
|
|
|
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
|
|
|
|
|
|
|
# bbox loss
|
|
|
|
if fg_mask.sum():
|
|
|
|
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
|
|
|
|
target_scores, target_scores_sum, fg_mask)
|
|
|
|
for i in range(batch_size):
|
|
|
|
if fg_mask[i].sum():
|
|
|
|
mask_idx = target_gt_idx[i][fg_mask[i]] + 1
|
|
|
|
if self.overlap:
|
|
|
|
gt_mask = torch.where(masks[[i]] == mask_idx.view(-1, 1, 1), 1.0, 0.0)
|
|
|
|
else:
|
|
|
|
gt_mask = masks[batch_idx == i][mask_idx]
|
|
|
|
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
|
|
|
|
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
|
|
|
|
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
|
|
|
|
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
|
|
|
|
marea) # seg loss
|
|
|
|
# WARNING: Uncomment lines below in case of Multi-GPU DDP unused gradient errors
|
|
|
|
# else:
|
|
|
|
# loss[1] += proto.sum() * 0
|
|
|
|
# else:
|
|
|
|
# loss[1] += proto.sum() * 0
|
|
|
|
|
|
|
|
loss[0] *= 7.5 # box gain
|
|
|
|
loss[1] *= 7.5 / batch_size # seg gain
|
|
|
|
loss[2] *= 0.5 # cls gain
|
|
|
|
loss[3] *= 1.5 # dfl gain
|
|
|
|
|
|
|
|
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
|
|
|
|
|
|
|
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
|
|
|
|
# Mask loss for one image
|
|
|
|
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
|
|
|
|
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
|
|
|
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
|
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
|
|
|
def train(cfg):
|
|
|
|
cfg.model = cfg.model or "yolov8n-seg.yaml"
|
|
|
|
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
|
|
|
|
trainer = SegmentationTrainer(cfg)
|
|
|
|
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
"""
|
|
|
|
CLI usage:
|
|
|
|
python ultralytics/yolo/v8/segment/train.py model=yolov8n-seg.yaml data=coco128-segments epochs=100 imgsz=640
|
|
|
|
|
|
|
|
TODO:
|
|
|
|
Direct cli support, i.e, yolov8 classify_train args.epochs 10
|
|
|
|
"""
|
|
|
|
train()
|