update model initialization design, supports custom data/num_classes (#44)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent 1f3aad86c1
commit 832ea56eb4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -94,7 +94,7 @@ jobs:
- name: Test segmentation
shell: bash # for Windows compatibility
run: |
python ultralytics/yolo/v8/segment/train.py cfg=yolov5n-seg.yaml data=coco128-seg.yaml epochs=1 img_size=64
python ultralytics/yolo/v8/segment/train.py model=yolov5n-seg.yaml data=coco128-seg.yaml epochs=1 img_size=64
- name: Test classification
shell: bash # for Windows compatibility
run: |

3
.gitignore vendored

@ -130,4 +130,5 @@ dmypy.json
# datasets and projects
datasets/
ultralytics-yolo/
ultralytics-yolo/
runs/

@ -63,10 +63,8 @@ class BaseTrainer:
else:
self.data = check_dataset(self.data)
self.trainset, self.testset = self.get_dataset(self.data)
if self.args.cfg is not None:
self.model = self.load_cfg(check_file(self.args.cfg))
if self.args.model is not None:
self.model = self.get_model(self.args.model, self.args.pretrained).to(self.device)
if self.args.model:
self.model = self.get_model(self.args.model, self.data)
# epoch level metrics
self.metrics = {} # handle metrics returned by validator
@ -261,20 +259,20 @@ class BaseTrainer:
"""
return data["train"], data["val"]
def get_model(self, model, pretrained):
def get_model(self, model: str, data: Dict):
"""
load/create/download model for any task
"""
model = get_model(model)
for m in model.modules():
if not pretrained and hasattr(m, 'reset_parameters'):
m.reset_parameters()
for p in model.parameters():
p.requires_grad = True
pretrained = False
if not str(model).endswith(".yaml"):
pretrained = True
weights = get_model(model) # rename this to something less confusing?
model = self.load_model(model_cfg=model if not pretrained else None,
weights=weights if pretrained else None,
data=self.data)
return model
def load_cfg(self, cfg):
def load_model(self, model_cfg, weights, data):
raise NotImplementedError("This task trainer doesn't support loading cfg files")
def get_validator(self):

@ -3,8 +3,7 @@
# Train settings -------------------------------------------------------------------------------------------------------
model: null # i.e. yolov5s.pt
cfg: null # i.e. yolov5s.yaml
model: null # i.e. yolov5s.pt, yolo.yaml
data: null # i.e. coco128.yaml
epochs: 300
batch_size: 16
@ -70,6 +69,7 @@ mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)
label_smoothing: 0.0
# anchors: 3
# Hydra configs --------------------------------------------------------------------------------------------------------
hydra:

@ -140,8 +140,3 @@ def download(url, dir=Path.cwd(), unzip=True, delete=True, curl=False, threads=1
else:
for u in [url] if isinstance(url, (str, Path)) else url:
download_one(u, dir)
def get_model(model: str):
# check for local weights
pass

@ -66,7 +66,7 @@ class BaseModel(nn.Module):
return self
def load(self, weights):
# Force all tasks implement this function
# Force all tasks to implement this function
raise NotImplementedError("This function needs to be implemented by derived classes!")
@ -169,10 +169,10 @@ class DetectionModel(BaseModel):
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
def load(self, weights):
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = weights['model'].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_state_dicts(csd, self.state_dict()) # intersect
self.load_state_dict(csd, strict=False) # load
LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from {weights}')
class SegmentationModel(DetectionModel):
@ -203,11 +203,33 @@ class ClassificationModel(BaseModel):
self.nc = nc
def _from_yaml(self, cfg):
# Create a YOLOv5 classification model from a *.yaml file
# TODO: Create a YOLOv5 classification model from a *.yaml file
self.model = None
def load(self, weights):
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts
csd = model.float().state_dict()
csd = intersect_state_dicts(csd, self.state_dict()) # intersect
self.load_state_dict(csd, strict=False) # load
@staticmethod
def reshape_outputs(model, nc):
# Update a TorchVision classification model to class count 'n' if required
from ultralytics.yolo.utils.modeling.modules import Classify
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
if isinstance(m, Classify): # YOLO Classify() head
if m.linear.out_features != nc:
m.linear = nn.Linear(m.linear.in_features, nc)
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
if m.out_features != nc:
setattr(model, name, nn.Linear(m.in_features, nc))
elif isinstance(m, nn.Sequential):
types = [type(x) for x in m]
if nn.Linear in types:
i = types.index(nn.Linear) # nn.Linear index
if m[i].out_features != nc:
m[i] = nn.Linear(m[i].in_features, nc)
elif nn.Conv2d in types:
i = types.index(nn.Conv2d) # nn.Conv2d index
if m[i].out_channels != nc:
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias)

@ -1,26 +1,27 @@
import subprocess
import time
from pathlib import Path
import hydra
import torch
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils import colorstr
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import WorkingDirectory
from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, torch_distributed_zero_first
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel
# BaseTrainer python usage
class ClassificationTrainer(BaseTrainer):
def load_model(self, model_cfg, weights, data):
# TODO: why treat clf models as unique. We should have clf yamls?
if weights and not weights.__class__.__name__.startswith("yolo"): # torchvision
model = weights
else:
model = ClassificationModel(model_cfg, weights, data["nc"])
ClassificationModel.reshape_outputs(model, data["nc"])
return model
def get_dataloader(self, dataset_path, batch_size=None, rank=0):
return build_classification_dataloader(path=dataset_path,
imgsz=self.args.img_size,
batch_size=self.args.batch_size,
batch_size=batch_size,
rank=rank)
def preprocess_batch(self, batch):

@ -10,12 +10,11 @@ import torch.nn.functional as F
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import WorkingDirectory
from ultralytics.yolo.utils.anchors import check_anchors
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, de_parallel, torch_distributed_zero_first
from ultralytics.yolo.utils.torch_utils import de_parallel
# BaseTrainer python usage
@ -45,8 +44,15 @@ class SegmentationTrainer(BaseTrainer):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
return batch
def load_cfg(self, cfg):
return SegmentationModel(cfg, nc=80)
def load_model(self, model_cfg, weights, data):
model = SegmentationModel(model_cfg if model_cfg else weights["model"].yaml,
ch=3,
nc=data["nc"],
anchors=self.args.get("anchors"))
check_anchors(model, self.args.anchor_t, self.args.img_size)
if weights:
model.load(weights)
return model
def get_validator(self):
return v8.segment.SegmentationValidator(self.test_loader, self.device, logger=self.console)
@ -232,7 +238,7 @@ class SegmentationTrainer(BaseTrainer):
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def train(cfg):
cfg.cfg = v8.ROOT / "models/yolov5n-seg.yaml"
cfg.model = v8.ROOT / "models/yolov5n-seg.yaml"
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
trainer = SegmentationTrainer(cfg)
trainer.train()

Loading…
Cancel
Save