You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

605 lines
24 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Ultralytics Results, Boxes and Masks classes for handling inference results
Usage: See https://docs.ultralytics.com/modes/predict/
"""
from copy import deepcopy
from functools import lru_cache
from pathlib import Path
import numpy as np
import torch
from ultralytics.data.augment import LetterBox
from ultralytics.utils import LOGGER, SimpleClass, deprecation_warn, ops
from ultralytics.utils.plotting import Annotator, colors, save_one_box
class BaseTensor(SimpleClass):
"""
Base tensor class with additional methods for easy manipulation and device handling.
"""
def __init__(self, data, orig_shape) -> None:
"""Initialize BaseTensor with data and original shape.
Args:
data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
orig_shape (tuple): Original shape of image.
"""
assert isinstance(data, (torch.Tensor, np.ndarray))
self.data = data
self.orig_shape = orig_shape
@property
def shape(self):
"""Return the shape of the data tensor."""
return self.data.shape
def cpu(self):
"""Return a copy of the tensor on CPU memory."""
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)
def numpy(self):
"""Return a copy of the tensor as a numpy array."""
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)
def cuda(self):
"""Return a copy of the tensor on GPU memory."""
return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)
def to(self, *args, **kwargs):
"""Return a copy of the tensor with the specified device and dtype."""
return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)
def __len__(self): # override len(results)
"""Return the length of the data tensor."""
return len(self.data)
def __getitem__(self, idx):
"""Return a BaseTensor with the specified index of the data tensor."""
return self.__class__(self.data[idx], self.orig_shape)
class Results(SimpleClass):
"""
A class for storing and manipulating inference results.
Args:
orig_img (numpy.ndarray): The original image as a numpy array.
path (str): The path to the image file.
names (dict): A dictionary of class names.
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
Attributes:
orig_img (numpy.ndarray): The original image as a numpy array.
orig_shape (tuple): The original image shape in (height, width) format.
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (Probs, optional): A Probs object containing probabilities of each class for classification task.
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object.
speed (dict): A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image.
names (dict): A dictionary of class names.
path (str): The path to the image file.
_keys (tuple): A tuple of attribute names for non-empty attributes.
"""
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None:
"""Initialize the Results class."""
self.orig_img = orig_img
self.orig_shape = orig_img.shape[:2]
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
self.probs = Probs(probs) if probs is not None else None
self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image
self.names = names
self.path = path
self.save_dir = None
self._keys = ('boxes', 'masks', 'probs', 'keypoints')
def __getitem__(self, idx):
"""Return a Results object for the specified index."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k)[idx])
return r
def __len__(self):
"""Return the number of detections in the Results object."""
for k in self.keys:
return len(getattr(self, k))
def update(self, boxes=None, masks=None, probs=None):
"""Update the boxes, masks, and probs attributes of the Results object."""
if boxes is not None:
ops.clip_boxes(boxes, self.orig_shape) # clip boxes
self.boxes = Boxes(boxes, self.orig_shape)
if masks is not None:
self.masks = Masks(masks, self.orig_shape)
if probs is not None:
self.probs = probs
def cpu(self):
"""Return a copy of the Results object with all tensors on CPU memory."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).cpu())
return r
def numpy(self):
"""Return a copy of the Results object with all tensors as numpy arrays."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).numpy())
return r
def cuda(self):
"""Return a copy of the Results object with all tensors on GPU memory."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).cuda())
return r
def to(self, *args, **kwargs):
"""Return a copy of the Results object with tensors on the specified device and dtype."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).to(*args, **kwargs))
return r
def new(self):
"""Return a new Results object with the same image, path, and names."""
return Results(orig_img=self.orig_img, path=self.path, names=self.names)
@property
def keys(self):
"""Return a list of non-empty attribute names."""
return [k for k in self._keys if getattr(self, k) is not None]
def plot(
self,
conf=True,
line_width=None,
font_size=None,
font='Arial.ttf',
pil=False,
img=None,
im_gpu=None,
kpt_radius=5,
kpt_line=True,
labels=True,
boxes=True,
masks=True,
probs=True,
**kwargs # deprecated args TODO: remove support in 8.2
):
"""
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.
Args:
conf (bool): Whether to plot the detection confidence score.
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
font (str): The font to use for the text.
pil (bool): Whether to return the image as a PIL Image.
img (numpy.ndarray): Plot to another image. if not, plot to original image.
im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
kpt_line (bool): Whether to draw lines connecting keypoints.
labels (bool): Whether to plot the label of bounding boxes.
boxes (bool): Whether to plot the bounding boxes.
masks (bool): Whether to plot the masks.
probs (bool): Whether to plot classification probability
Returns:
(numpy.ndarray): A numpy array of the annotated image.
Example:
```python
from PIL import Image
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
results = model('bus.jpg') # results list
for r in results:
im_array = r.plot() # plot a BGR numpy array of predictions
im = Image.fromarray(im[..., ::-1]) # RGB PIL image
im.show() # show image
im.save('results.jpg') # save image
```
"""
if img is None and isinstance(self.orig_img, torch.Tensor):
img = np.ascontiguousarray(self.orig_img[0].permute(1, 2, 0).cpu().detach().numpy()) * 255
# Deprecation warn TODO: remove in 8.2
if 'show_conf' in kwargs:
deprecation_warn('show_conf', 'conf')
conf = kwargs['show_conf']
assert type(conf) == bool, '`show_conf` should be of boolean type, i.e, show_conf=True/False'
if 'line_thickness' in kwargs:
deprecation_warn('line_thickness', 'line_width')
line_width = kwargs['line_thickness']
assert type(line_width) == int, '`line_width` should be of int type, i.e, line_width=3'
names = self.names
pred_boxes, show_boxes = self.boxes, boxes
pred_masks, show_masks = self.masks, masks
pred_probs, show_probs = self.probs, probs
annotator = Annotator(
deepcopy(self.orig_img if img is None else img),
line_width,
font_size,
font,
pil or (pred_probs is not None and show_probs), # Classify tasks default to pil=True
example=names)
# Plot Segment results
if pred_masks and show_masks:
if im_gpu is None:
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
im_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute(
2, 0, 1).flip(0).contiguous() / 255
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)
# Plot Detect results
if pred_boxes and show_boxes:
for d in reversed(pred_boxes):
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
name = ('' if id is None else f'id:{id} ') + names[c]
label = (f'{name} {conf:.2f}' if conf else name) if labels else None
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
# Plot Classify results
if pred_probs is not None and show_probs:
text = ',\n'.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5)
x = round(self.orig_shape[0] * 0.03)
annotator.text([x, x], text, txt_color=(255, 255, 255)) # TODO: allow setting colors
# Plot Pose results
if self.keypoints is not None:
for k in reversed(self.keypoints.data):
annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)
return annotator.result()
def verbose(self):
"""
Return log string for each task.
"""
log_string = ''
probs = self.probs
boxes = self.boxes
if len(self) == 0:
return log_string if probs is not None else f'{log_string}(no detections), '
if probs is not None:
log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
if boxes:
for c in boxes.cls.unique():
n = (boxes.cls == c).sum() # detections per class
log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
return log_string
def save_txt(self, txt_file, save_conf=False):
"""
Save predictions into txt file.
Args:
txt_file (str): txt file path.
save_conf (bool): save confidence score or not.
"""
boxes = self.boxes
masks = self.masks
probs = self.probs
kpts = self.keypoints
texts = []
if probs is not None:
# Classify
[texts.append(f'{probs.data[j]:.2f} {self.names[j]}') for j in probs.top5]
elif boxes:
# Detect/segment/pose
for j, d in enumerate(boxes):
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
line = (c, *d.xywhn.view(-1))
if masks:
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2)
line = (c, *seg)
if kpts is not None:
kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
line += (*kpt.reshape(-1).tolist(), )
line += (conf, ) * save_conf + (() if id is None else (id, ))
texts.append(('%g ' * len(line)).rstrip() % line)
if texts:
with open(txt_file, 'a') as f:
f.writelines(text + '\n' for text in texts)
def save_crop(self, save_dir, file_name=Path('im.jpg')):
"""
Save cropped predictions to `save_dir/cls/file_name.jpg`.
Args:
save_dir (str | pathlib.Path): Save path.
file_name (str | pathlib.Path): File name.
"""
if self.probs is not None:
LOGGER.warning('WARNING ⚠️ Classify task do not support `save_crop`.')
return
if isinstance(save_dir, str):
save_dir = Path(save_dir)
if isinstance(file_name, str):
file_name = Path(file_name)
for d in self.boxes:
save_one_box(d.xyxy,
self.orig_img.copy(),
file=save_dir / self.names[int(d.cls)] / f'{file_name.stem}.jpg',
BGR=True)
def tojson(self, normalize=False):
"""Convert the object to JSON format."""
if self.probs is not None:
LOGGER.warning('Warning: Classify task do not support `tojson` yet.')
return
import json
# Create list of detection dictionaries
results = []
data = self.boxes.data.cpu().tolist()
h, w = self.orig_shape if normalize else (1, 1)
for i, row in enumerate(data):
box = {'x1': row[0] / w, 'y1': row[1] / h, 'x2': row[2] / w, 'y2': row[3] / h}
conf = row[4]
id = int(row[5])
name = self.names[id]
result = {'name': name, 'class': id, 'confidence': conf, 'box': box}
if self.masks:
x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1] # numpy array
result['segments'] = {'x': (x / w).tolist(), 'y': (y / h).tolist()}
if self.keypoints is not None:
x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1) # torch Tensor
result['keypoints'] = {'x': (x / w).tolist(), 'y': (y / h).tolist(), 'visible': visible.tolist()}
results.append(result)
# Convert detections to JSON
return json.dumps(results, indent=2)
class Boxes(BaseTensor):
"""
A class for storing and manipulating detection boxes.
Args:
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
If present, the third last column contains track IDs.
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format.
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format.
xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size.
xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size.
data (torch.Tensor): The raw bboxes tensor (alias for `boxes`).
Methods:
cpu(): Move the object to CPU memory.
numpy(): Convert the object to a numpy array.
cuda(): Move the object to CUDA memory.
to(*args, **kwargs): Move the object to the specified device.
"""
def __init__(self, boxes, orig_shape) -> None:
"""Initialize the Boxes class."""
if boxes.ndim == 1:
boxes = boxes[None, :]
n = boxes.shape[-1]
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls
super().__init__(boxes, orig_shape)
self.is_track = n == 7
self.orig_shape = orig_shape
@property
def xyxy(self):
"""Return the boxes in xyxy format."""
return self.data[:, :4]
@property
def conf(self):
"""Return the confidence values of the boxes."""
return self.data[:, -2]
@property
def cls(self):
"""Return the class values of the boxes."""
return self.data[:, -1]
@property
def id(self):
"""Return the track IDs of the boxes (if available)."""
return self.data[:, -3] if self.is_track else None
@property
@lru_cache(maxsize=2) # maxsize 1 should suffice
def xywh(self):
"""Return the boxes in xywh format."""
return ops.xyxy2xywh(self.xyxy)
@property
@lru_cache(maxsize=2)
def xyxyn(self):
"""Return the boxes in xyxy format normalized by original image size."""
xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
xyxy[..., [0, 2]] /= self.orig_shape[1]
xyxy[..., [1, 3]] /= self.orig_shape[0]
return xyxy
@property
@lru_cache(maxsize=2)
def xywhn(self):
"""Return the boxes in xywh format normalized by original image size."""
xywh = ops.xyxy2xywh(self.xyxy)
xywh[..., [0, 2]] /= self.orig_shape[1]
xywh[..., [1, 3]] /= self.orig_shape[0]
return xywh
@property
def boxes(self):
"""Return the raw bboxes tensor (deprecated)."""
LOGGER.warning("WARNING ⚠️ 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.")
return self.data
class Masks(BaseTensor):
"""
A class for storing and manipulating detection masks.
Attributes:
segments (list): Deprecated property for segments (normalized).
xy (list): A list of segments in pixel coordinates.
xyn (list): A list of normalized segments.
Methods:
cpu(): Returns the masks tensor on CPU memory.
numpy(): Returns the masks tensor as a numpy array.
cuda(): Returns the masks tensor on GPU memory.
to(device, dtype): Returns the masks tensor with the specified device and dtype.
"""
def __init__(self, masks, orig_shape) -> None:
"""Initialize the Masks class with the given masks tensor and original image shape."""
if masks.ndim == 2:
masks = masks[None, :]
super().__init__(masks, orig_shape)
@property
@lru_cache(maxsize=1)
def segments(self):
"""Return segments (normalized). Deprecated; use xyn property instead."""
LOGGER.warning(
"WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and 'Masks.xy' for segments (pixels) instead."
)
return self.xyn
@property
@lru_cache(maxsize=1)
def xyn(self):
"""Return normalized segments."""
return [
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
for x in ops.masks2segments(self.data)]
@property
@lru_cache(maxsize=1)
def xy(self):
"""Return segments in pixel coordinates."""
return [
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
for x in ops.masks2segments(self.data)]
@property
def masks(self):
"""Return the raw masks tensor. Deprecated; use data attribute instead."""
LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.")
return self.data
class Keypoints(BaseTensor):
"""
A class for storing and manipulating detection keypoints.
Attributes:
xy (torch.Tensor): A collection of keypoints containing x, y coordinates for each detection.
xyn (torch.Tensor): A normalized version of xy with coordinates in the range [0, 1].
conf (torch.Tensor): Confidence values associated with keypoints if available, otherwise None.
Methods:
cpu(): Returns a copy of the keypoints tensor on CPU memory.
numpy(): Returns a copy of the keypoints tensor as a numpy array.
cuda(): Returns a copy of the keypoints tensor on GPU memory.
to(device, dtype): Returns a copy of the keypoints tensor with the specified device and dtype.
"""
def __init__(self, keypoints, orig_shape) -> None:
"""Initializes the Keypoints object with detection keypoints and original image size."""
if keypoints.ndim == 2:
keypoints = keypoints[None, :]
super().__init__(keypoints, orig_shape)
self.has_visible = self.data.shape[-1] == 3
@property
@lru_cache(maxsize=1)
def xy(self):
"""Returns x, y coordinates of keypoints."""
return self.data[..., :2]
@property
@lru_cache(maxsize=1)
def xyn(self):
"""Returns normalized x, y coordinates of keypoints."""
xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
xy[..., 0] /= self.orig_shape[1]
xy[..., 1] /= self.orig_shape[0]
return xy
@property
@lru_cache(maxsize=1)
def conf(self):
"""Returns confidence values of keypoints if available, else None."""
return self.data[..., 2] if self.has_visible else None
class Probs(BaseTensor):
"""
A class for storing and manipulating classification predictions.
Attributes:
top1 (int): Index of the top 1 class.
top5 (list[int]): Indices of the top 5 classes.
top1conf (torch.Tensor): Confidence of the top 1 class.
top5conf (torch.Tensor): Confidences of the top 5 classes.
Methods:
cpu(): Returns a copy of the probs tensor on CPU memory.
numpy(): Returns a copy of the probs tensor as a numpy array.
cuda(): Returns a copy of the probs tensor on GPU memory.
to(): Returns a copy of the probs tensor with the specified device and dtype.
"""
def __init__(self, probs, orig_shape=None) -> None:
super().__init__(probs, orig_shape)
@property
@lru_cache(maxsize=1)
def top1(self):
"""Return the index of top 1."""
return int(self.data.argmax())
@property
@lru_cache(maxsize=1)
def top5(self):
"""Return the indices of top 5."""
return (-self.data).argsort(0)[:5].tolist() # this way works with both torch and numpy.
@property
@lru_cache(maxsize=1)
def top1conf(self):
"""Return the confidence of top 1."""
return self.data[self.top1]
@property
@lru_cache(maxsize=1)
def top5conf(self):
"""Return the confidences of top 5."""
return self.data[self.top5]