Fix keypoints.conf update Results docs (#2977)

single_channel
Laughing 2 years ago committed by GitHub
parent a9129fb40e
commit bb5bbc2893
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -138,7 +138,8 @@ The `Results` object contains the following components:
- `Results.boxes`: `Boxes` object with properties and methods for manipulating bounding boxes
- `Results.masks`: `Masks` object for indexing masks or getting segment coordinates
- `Results.probs`: `torch.Tensor` containing class probabilities or logits
- `Results.keypoints`: `Keypoints` object for with properties and methods for manipulating predicted keypoints.
- `Results.probs`: `Probs` object for containing class probabilities.
- `Results.orig_img`: Original image loaded in memory
- `Results.path`: `Path` containing the path to the input image
@ -178,8 +179,8 @@ operations are cached, meaning they're only calculated once per object, and thos
boxes.xywh # box with xywh format, (N, 4)
boxes.xyxyn # box with xyxy format but normalized, (N, 4)
boxes.xywhn # box with xywh format but normalized, (N, 4)
boxes.conf # confidence score, (N, 1)
boxes.cls # cls, (N, 1)
boxes.conf # confidence score, (N, )
boxes.cls # cls, (N, )
boxes.data # raw bboxes tensor, (N, 6) or boxes.boxes
```
@ -197,15 +198,35 @@ operations are cached, meaning they're only calculated once per object, and thos
masks.data # raw masks tensor, (N, H, W) or masks.masks
```
### Keypoints
`Keypoints` object can be used index, manipulate and normalize coordinates. The keypoint conversion operation is cached.
!!! example "Keypoints"
```python
results = model(inputs)
keypoints = results[0].keypoints # Masks object
keypoints.xy # x, y keypoints (pixels), (num_dets, num_kpts, 2/3), the last dimension can be 2 or 3, depends the model.
keypoints.xyn # x, y keypoints (normalized), (num_dets, num_kpts, 2/3)
keypoints.conf # confidence score(num_dets, num_kpts) of each keypoint if the last dimension is 3.
keypoints.data # raw keypoints tensor, (num_dets, num_kpts, 2/3)
```
### probs
`probs` attribute of `Results` class is a `Tensor` containing class probabilities of a classification operation.
`Probs` object can be used index, get top1&top5 indices and scores of classification.
!!! example "Probs"
```python
results = model(inputs)
results[0].probs # cls prob, (num_class, )
probs = results[0].probs # cls prob, (num_class, )
probs.top5 # The top5 indices of classification, List[Int] * 5.
probs.top1 # The top1 indices of classification, a value with Int type.
probs.top5conf # The top5 scores of classification, a tensor with shape (5, ).
probs.top1conf # The top1 scores of classification. a value with torch.tensor type.
keypoints.data # raw probs tensor, (num_class, )
```
Class reference documentation for `Results` module and its components can be found [here](../reference/yolo/engine/results.md)
@ -213,7 +234,7 @@ Class reference documentation for `Results` module and its components can be fou
## Plotting results
You can use `plot()` function of `Result` object to plot results on in image object. It plots all components(boxes,
masks, classification logits, etc.) found in the results object
masks, classification probabilities, etc.) found in the results object
!!! example "Plotting"

@ -220,9 +220,10 @@ def _test_results_api(res):
res.plot(pil=True)
res.plot(conf=True, boxes=False)
res.plot()
print(res)
print(res.path)
for k in res.keys:
print(getattr(res, k).data)
print(getattr(res, k))
def test_results():

@ -71,9 +71,9 @@ class Results(SimpleClass):
orig_img (numpy.ndarray): The original image as a numpy array.
path (str): The path to the image file.
names (dict): A dictionary of class names.
boxes (List[List[float]], optional): A list of bounding box coordinates for each detection.
masks (numpy.ndarray, optional): A 3D numpy array of detection masks, where each mask is a binary image.
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
@ -82,10 +82,10 @@ class Results(SimpleClass):
orig_shape (tuple): The original image shape in (height, width) format.
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
probs (Probs, optional): A Probs object containing probabilities of each class for classification task.
names (dict): A dictionary of class names.
path (str): The path to the image file.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object.
speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image.
_keys (tuple): A tuple of attribute names for non-empty attributes.
"""
@ -552,7 +552,7 @@ class Keypoints(BaseTensor):
@property
@lru_cache(maxsize=1)
def conf(self):
return self.data[..., 3] if self.has_visible else None
return self.data[..., 2] if self.has_visible else None
class Probs(BaseTensor):

Loading…
Cancel
Save