|
|
|
## Using YOLO models
|
|
|
|
This is the simplest way of simply using yolo models in a python environment. It can be imported from the `ultralytics` module.
|
|
|
|
|
|
|
|
!!! example "Usage"
|
|
|
|
=== "Training"
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
model = YOLO("yolov8n.yaml")
|
|
|
|
model(img_tensor) # Or model.forward(). inference.
|
|
|
|
model.train(data="coco128.yaml", epochs=5)
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Training pretrained"
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
model = YOLO("yolov8n.pt") # pass any model type
|
|
|
|
model(...) # inference
|
|
|
|
model.train(epochs=5)
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Resume Training"
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
model = YOLO()
|
|
|
|
model.resume(task="detect") # resume last detection training
|
|
|
|
model.resume(model="last.pt") # resume from a given model/run
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Visualize/save Predictions"
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
model = YOLO("model.pt")
|
|
|
|
model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam
|
|
|
|
model.predict(source="folder", view_img=True) # Display preds. Accepts all yolo predict arguments
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
!!! note "Export and Deployment"
|
|
|
|
|
|
|
|
=== "Export, Fuse & info"
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
model = YOLO("model.pt")
|
|
|
|
model.fuse()
|
|
|
|
model.info(verbose=True) # Print model information
|
|
|
|
model.export(format=) # TODO:
|
|
|
|
|
|
|
|
```
|
|
|
|
=== "Deployment"
|
|
|
|
|
|
|
|
|
|
|
|
More functionality coming soon
|
|
|
|
|
|
|
|
To know more about using `YOLO` models, refer Model class Reference
|
|
|
|
|
|
|
|
[Model reference](reference/model.md){ .md-button .md-button--primary}
|
|
|
|
|
|
|
|
---
|
|
|
|
### Using Trainers
|
|
|
|
`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits from `BaseTrainer`.
|
|
|
|
!!! tip "Detection Trainer Example"
|
|
|
|
```python
|
|
|
|
from ultralytics.yolo import v8 import DetectionTrainer, DetectionValidator, DetectionPredictor
|
|
|
|
|
|
|
|
# trainer
|
|
|
|
trainer = DetectionTrainer(overrides={})
|
|
|
|
trainer.train()
|
|
|
|
trained_model = trainer.best
|
|
|
|
|
|
|
|
# Validator
|
|
|
|
val = DetectionValidator(args=...)
|
|
|
|
val(model=trained_model)
|
|
|
|
|
|
|
|
# predictor
|
|
|
|
pred = DetectionPredictor(overrides={})
|
|
|
|
pred(source=SOURCE, model=trained_model)
|
|
|
|
|
|
|
|
# resume from last weight
|
|
|
|
overrides["resume"] = trainer.last
|
|
|
|
trainer = detect.DetectionTrainer(overrides=overrides)
|
|
|
|
|
|
|
|
```
|
|
|
|
You can easily customize Trainers to support custom tasks or explore R&D ideas.
|
|
|
|
Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization Section.
|
|
|
|
|
|
|
|
[Customization tutorials](engine.md){ .md-button .md-button--primary}
|