## Using YOLO models This is the simplest way of simply using yolo models in a python environment. It can be imported from the `ultralytics` module. !!! example "Usage" === "Training" ```python from ultralytics import YOLO model = YOLO("yolov8n.yaml") model(img_tensor) # Or model.forward(). inference. model.train(data="coco128.yaml", epochs=5) ``` === "Training pretrained" ```python from ultralytics import YOLO model = YOLO("yolov8n.pt") # pass any model type model(...) # inference model.train(epochs=5) ``` === "Resume Training" ```python from ultralytics import YOLO model = YOLO() model.resume(task="detect") # resume last detection training model.resume(model="last.pt") # resume from a given model/run ``` === "Visualize/save Predictions" ```python from ultralytics import YOLO model = YOLO("model.pt") model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam model.predict(source="folder", view_img=True) # Display preds. Accepts all yolo predict arguments ``` !!! note "Export and Deployment" === "Export, Fuse & info" ```python from ultralytics import YOLO model = YOLO("model.pt") model.fuse() model.info(verbose=True) # Print model information model.export(format=) # TODO: ``` === "Deployment" More functionality coming soon To know more about using `YOLO` models, refer Model class Reference [Model reference](reference/model.md){ .md-button .md-button--primary} --- ### Using Trainers `YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits from `BaseTrainer`. !!! tip "Detection Trainer Example" ```python from ultralytics.yolo import v8 import DetectionTrainer, DetectionValidator, DetectionPredictor # trainer trainer = DetectionTrainer(overrides={}) trainer.train() trained_model = trainer.best # Validator val = DetectionValidator(args=...) val(model=trained_model) # predictor pred = DetectionPredictor(overrides={}) pred(source=SOURCE, model=trained_model) # resume from last weight overrides["resume"] = trainer.last trainer = detect.DetectionTrainer(overrides=overrides) ``` You can easily customize Trainers to support custom tasks or explore R&D ideas. Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization Section. [Customization tutorials](engine.md){ .md-button .md-button--primary}