Added filter parameters to readme.

master
Rostislav Lán 2 years ago
parent b12a0d3e9b
commit a0ffab3593

@ -76,20 +76,7 @@ Once all the requirements are installed, the program is ready to use. There are
There is an option to input the filter series as a preset from json configuration file.
<style>
table {
width: 100%;
}
th, td {
padding: 10px;
font-family: monospace;
width: 50%;
vertical-align: top;
}
</style>
<table>
<table style="width:100%;">
<thead>
<tr>
<th>General format</th>
@ -147,49 +134,64 @@ All the filters used and their parameters are described below.
## Available filters with parameters
-median blur
-ksize - kernel size (int)
-ksize - Kernel size (int)
-gaussian blur
-ksize - Gaussian kernel size (int)
-sigmaX - Kernel deviation in X direction (float)
-sigmaY - Kernel deviation in Y direction (float)
-sigma - Gaussian kernel standart deviation (int)
-bilateral blur
-d - ? (int)
-sigmaColor - ? (int)
-sigmaSpace - ? (int)
-diameter - Diameter of pixel neighborhood used for filtering (int)
-sigmaColor - Standard deviation for grayvalue/color distance (int)
-sigmaSpace - Standard deviation for range distance in pixels (int)
-denoise
-h - ? (int)
-tWS - template window size (int)
-sWs - search window size (int)
-bilateral_scikit
-sigmaColor - Standard deviation for grayvalue/color distance (float)
-sigmaSpace - Standard deviation for range distance in pixels (float)
-denoise_bilateral
-sigmaColor - ? (int)
-sigmaSpace - ? (int)
-iterations - ? (int)
-nlmeans (non-local means)
-patch_size - Size of patches used for denoising (int)
-patch_distance - Distance in pixels where to search for patches (int)
-h - Cut-off distance, higher means more smoothed image (float)
-denoise_tv_chambolle
-weight - ? (float)
-iterations - ? (int)
-total_variation
-weight - Denoising weight. (float)
-sharpen
-kernel - ? (numpy.matrix)
-unsharp mask
-strength - ? (float)
-ksize - kernel size (int)
-block_match
-sigma - ? (?)
-unsharp mask scikit
-radius - ? (int)
-amount - ? (float)
-morph
-kernel - ? (numpy.matrix)
-iterations - ? (int)
-op - opencv MORPH operation (MORPH_OPEN, MORPH_CLOSE,
MORPH_DILATE, MORPH_ERODE)
-anchor - ? (tuple)
-radius - Radius of the gaussian filter (int)
-amount - Strength of the unsharp mask (float)
-farid
-meijering
-sato
-hessian
-sigmas - ? (float)
-invert
-scale_values
-binarize
-threshold - value to cut differentiate pixels (int)
-maxval - maximal value (int) ??
-type - ? (str)
-binarize_otsu
-add_margin
-margin - number of pixels to add to the sides of the image (int)
-color - color value of newly added pixels (int)
-erode
-kernel - kernel shape (numpy.matrix)
-dilate
-kernel - kernel shape (numpy.matrix)
# Comparison

@ -8,9 +8,10 @@ import cv2 as cv
from skimage import filters as skiflt
from skimage import restoration as skirest
from skimage import morphology as skimorph
# from scipy import signal as sig
from scipy import ndimage
from PIL import Image, ImageFilter
import bm3d
import matplotlib.pyplot as plt
class filter:
@ -133,7 +134,7 @@ class nlmeans(filter):
# Size of patches used for denoising
patch_size = int(params["patch_size"]) if params["patch_size"] else 5
# Distance in pixels where to search patches
# Distance in pixels where to search for patches
patch_distance = int(params["patch_distance"]
) if params["patch_distance"] else 3
@ -210,7 +211,7 @@ class unsharp_mask_scikit(filter):
str(radius) + " amount: " + str(amount))
self.img = skiflt.unsharp_mask(self.img, radius=radius,
amount=amount, channel_axis=None)
self.img = np.uint8(self.img * 255.0) # converting back to uintknapsack
self.img = np.uint8(self.img * 255.0) # converting back to uint
# ------------------- EDGE DETECTION FILTERS -------------------#
@ -319,6 +320,16 @@ class binarize(filter):
self.img = cv.threshold(self.img, threshold, maxval, type)[1]
class binarize_otsu(filter):
''' Otsu binarization filter from opencv.
'''
def init(self, img):
super().__init__(img)
def apply(self, _):
self.img = cv.threshold(self.img, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU)[1]
class add_margin(filter):
def init(self, img):
super().__init__(img)

@ -122,7 +122,7 @@ class app:
# TODO: possibly too bloated, sending all possible params to each filter
# TODO: remove unnecessary params
possible_params = {"h", "searchWindowSize", "templateWindowSize",
"ksize", "kernel",
"ksize", "kernel", "angle",
"sigmaColor", "sigmaSpace", "diameter", "anchor", "iterations",
"op", "strength", "amount", "radius", "weight", "channelAxis",
"theta", "sigma", "lambd", "gamma", "psi", "shape", "percent",
@ -610,8 +610,7 @@ class app:
'''Map fingerprint to finger model.
'''
# TODO: this might be done in a better way
# instead of summing up the values, use their product - 0 ?
# TODO: this might be done in a better way, comment
z = np.array([])
for x in range(self.width):
z = np.append(z, np.sqrt(1 - (2*x/self.width - 1)**2)

Loading…
Cancel
Save