mirror of https://github.com/LooseEthics/pm
commit
b9c73fd57d
@ -0,0 +1,169 @@
|
||||
// Profilometer.cpp : This file contains the 'main' function. Program execution begins and ends there.
|
||||
//
|
||||
|
||||
//Program flow:
|
||||
// Initialize PMeter
|
||||
// Set geometry constants - sigma, dist, radius
|
||||
// Set camera constants - pixel dimensions, fov angles
|
||||
// Precalculate other constants - trig expressions and such
|
||||
// ---Precalculate curvature correction---
|
||||
// Nevermind, this varies with horizontal position and therefore both x and y, would need full screen 2d array
|
||||
// Maybe there's an approximation that's fixed in one of those and varies in the other?
|
||||
// Per frame:
|
||||
// Preprocessing - Calculate threshold for identifying intensity spikes
|
||||
// Build incidence pixel (IP) array
|
||||
// Laser likely centered, may not extend across whole fov -> start in middle of x range, not edge
|
||||
// Prioritize neighborhood search to cut down number of operations
|
||||
// Option 1: maximal intensity pixel is IP
|
||||
// Option 2: find groups of pixels above threshold, use weighted average of the segment as IP
|
||||
// Calculate real space depth of IPs
|
||||
// Apply curvature correction
|
||||
// Return depth array
|
||||
//
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <iostream>
|
||||
#include <math.h>
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
class PMeter {
|
||||
public:
|
||||
int height, width;
|
||||
// camera pixel dimensions
|
||||
double alpha, beta;
|
||||
// camera angle dimensions
|
||||
// full fov is 2* this angle, vertical and horizontal respectively
|
||||
// 0 < alpha < sigma
|
||||
// alpha >= sigma causes phi singularity
|
||||
// 0 < beta < pi/2
|
||||
double sigma;
|
||||
// angle between laser plane and camera center line
|
||||
// 0 < sigma < pi/2
|
||||
double dist;
|
||||
// distance between camera and laser
|
||||
double phi, theta;
|
||||
// coordinate angles
|
||||
|
||||
void fastinit(int h, int w, double a, double b, double s, double d, double p, double t) {
|
||||
//TODO: overload this
|
||||
// class variable initializer
|
||||
height = h;
|
||||
width = w;
|
||||
alpha = a;
|
||||
beta = b;
|
||||
sigma = s;
|
||||
dist = d;
|
||||
phi = p;
|
||||
theta = t;
|
||||
}
|
||||
|
||||
void print_conf() {
|
||||
std::cout << "Height: " << height << "\n";
|
||||
std::cout << "Width: " << width << "\n";
|
||||
std::cout << "Alpha: " << alpha << "\n";
|
||||
std::cout << "Beta: " << beta << "\n";
|
||||
std::cout << "Sigma: " << sigma << "\n";
|
||||
std::cout << "Dist: " << dist << "\n";
|
||||
std::cout << "Phi: " << phi << "\n";
|
||||
std::cout << "Theta: " << theta << "\n";
|
||||
}
|
||||
|
||||
double get_phi(int y) {
|
||||
// phi is angle below camera center line of given y coordinate - above center is negative
|
||||
// returns phi at pixel center, removing the +1 shifts this to low edge
|
||||
// alpha >= phi >= -alpha
|
||||
phi = atan(tan(alpha)/height * (2 * y + 1 - height));
|
||||
return phi;
|
||||
}
|
||||
|
||||
double get_theta(int x) {
|
||||
// theta is horizontal angle between center line and given x coordinate
|
||||
// returns theta at pixel center, removing the -1 shifts this to low edge
|
||||
// beta >= theta >= -beta
|
||||
// if viewed from above, positive theta means pixel vector is to the left of center, i.e. x < width/2
|
||||
theta = atan(tan(beta) / width * (width - 2 * x - 1));
|
||||
return theta;
|
||||
}
|
||||
|
||||
double pixel_delta_approx() {
|
||||
// returns approximation of change in elevation from y to y+1
|
||||
// assumes that epsilon=0
|
||||
double delta = 2 * dist * tan(alpha) * cos(phi) / (height * sin(sigma + phi) * sin(sigma + phi));
|
||||
return delta;
|
||||
}
|
||||
|
||||
double pixel_delta_exact() {
|
||||
// returns exact change in elevation from y to y+1
|
||||
double tan_eps = 2 * tan(alpha) * cos(phi) * cos(phi) / (height + 2 * tan(alpha) * sin(phi) * cos(phi));
|
||||
std::cout << "Tan(eps) at phi=" << phi << ": " << tan_eps << "\n";
|
||||
double delta = 2 * dist * tan(alpha) * cos(phi) * (cos(phi) - sin(phi) * tan_eps) / (height * sin(sigma + phi) * (sin(sigma + phi) + cos(sigma + phi) * tan_eps));
|
||||
return delta;
|
||||
}
|
||||
|
||||
double get_elevation() {
|
||||
// elevation above horizontal camera plane
|
||||
// singularity if phi = -sigma
|
||||
// flat projection surface -> x coordinate irrelevant
|
||||
double e = dist / tan(phi + sigma);
|
||||
return e;
|
||||
}
|
||||
|
||||
double get_horizontal_dist() {
|
||||
// get horizontal distance from center line, same sign convention as theta
|
||||
// generally depends on both x and y
|
||||
double f = dist * tan(theta) / sin(sigma + phi);
|
||||
return f;
|
||||
}
|
||||
|
||||
void approx_test_phi(double new_phi) {
|
||||
// print exact and approximate delta and the error at given phi
|
||||
// changes phi
|
||||
phi = new_phi;
|
||||
double da = pixel_delta_approx();
|
||||
std::cout << "Delta approx.: " << da << "\n";
|
||||
double de = pixel_delta_exact();
|
||||
std::cout << "Delta exact: " << de << "\n";
|
||||
std::cout << "Error absolute: " << (de - da) << "\n";
|
||||
std::cout << "Error relative: " << (de - da)/de << "\n";
|
||||
}
|
||||
|
||||
void edge_test() {
|
||||
// run approx_test_phi at bottom edge, phi=0, and top edge
|
||||
// preserves phi
|
||||
double old_phi = phi;
|
||||
std::cout << "\nMax phi\n";
|
||||
approx_test_phi(alpha);
|
||||
std::cout << "\nZero phi\n";
|
||||
approx_test_phi(0.0);
|
||||
std::cout << "\nMin phi\n";
|
||||
approx_test_phi(-1*alpha);
|
||||
phi = old_phi;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
PMeter PM;
|
||||
PM.fastinit(1000, 1000, M_PI / 6, M_PI / 6, M_PI / 3, 5.0, 0.0, 0.0);
|
||||
PM.print_conf();
|
||||
|
||||
|
||||
std::cout << "phi at y=50 is " << PM.get_phi(50) << "\n";
|
||||
PM.edge_test();
|
||||
|
||||
|
||||
////cv::Mat image = cv::imread("./PM_test_0.bmp");
|
||||
//cv::Mat image = cv::imread("./PM_test_1.png");
|
||||
////cv::Mat image = cv::imread("./PM_test_2.png");
|
||||
//
|
||||
//cv::String windowName = "imtest";
|
||||
//cv::namedWindow(windowName);
|
||||
//cv::imshow(windowName, image);
|
||||
//cv::waitKey(0);
|
||||
|
||||
|
||||
std::cout << "\n===\nEnd of main()\n===\n";
|
||||
}
|
||||
|
Loading…
Reference in new issue