9.4 KiB
Object detection is a task that involves identifying the location and class of objects in an image or video stream.
The output of an object detector is a set of bounding boxes that enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape.
!!! tip "Tip"
YOLOv8 Detect models are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml).
Models
YOLOv8 pretrained Detect models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset.
Models download automatically from the latest Ultralytics release on first use.
Model | size (pixels) |
mAPval 50-95 |
Speed CPU ONNX (ms) |
Speed A100 TensorRT (ms) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|
YOLOv8n | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
YOLOv8s | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
YOLOv8m | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
YOLOv8l | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
YOLOv8x | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- mAPval values are for single-model single-scale on COCO val2017 dataset.
Reproduce byyolo val detect data=coco.yaml device=0
- Speed averaged over COCO val images using an Amazon EC2 P4d
instance.
Reproduce byyolo val detect data=coco128.yaml batch=1 device=0|cpu
Train
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see the Configuration page.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.yaml') # build a new model from YAML
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
# Train the model
model.train(data='coco128.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Build a new model from YAML and start training from scratch
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640
# Start training from a pretrained *.pt model
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
# Build a new model from YAML, transfer pretrained weights to it and start training
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
```
Dataset format
YOLO detection dataset format can be found in detail in the Dataset Guide. To convert your existing dataset from other formats( like COCO, VOC etc.) to YOLO format, please use json2yolo tool by Ultralytics.
Val
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the model
retains it's
training data
and arguments as model attributes.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # a list contains map50-95 of each category
```
=== "CLI"
```bash
yolo detect val model=yolov8n.pt # val official model
yolo detect val model=path/to/best.pt # val custom model
```
Predict
Use a trained YOLOv8n model to run predictions on images.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
```
=== "CLI"
```bash
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
```
See full predict
mode details in the Predict page.
Export
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained
# Export the model
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
Available YOLOv8 export formats are in the table below. You can predict or validate directly on exported models,
i.e. yolo predict model=yolov8n.onnx
. Usage examples are shown for your model after export completes.
Format | format Argument |
Model | Metadata |
---|---|---|---|
PyTorch | - | yolov8n.pt |
✅ |
TorchScript | torchscript |
yolov8n.torchscript |
✅ |
ONNX | onnx |
yolov8n.onnx |
✅ |
OpenVINO | openvino |
yolov8n_openvino_model/ |
✅ |
TensorRT | engine |
yolov8n.engine |
✅ |
CoreML | coreml |
yolov8n.mlmodel |
✅ |
TF SavedModel | saved_model |
yolov8n_saved_model/ |
✅ |
TF GraphDef | pb |
yolov8n.pb |
❌ |
TF Lite | tflite |
yolov8n.tflite |
✅ |
TF Edge TPU | edgetpu |
yolov8n_edgetpu.tflite |
✅ |
TF.js | tfjs |
yolov8n_web_model/ |
✅ |
PaddlePaddle | paddle |
yolov8n_paddle_model/ |
✅ |
See full export
details in the Export page.