You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
71 lines
2.2 KiB
71 lines
2.2 KiB
## Using YOLO models
|
|
This is the simplest way of simply using yolo models in a python environment. It can be imported from the `ultralytics` module.
|
|
|
|
!!! example "Usage"
|
|
=== "Training"
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
model = YOLO()
|
|
model.new("n.yaml") # pass any model type
|
|
model.train(data="coco128.yaml", epochs=5)
|
|
```
|
|
|
|
=== "Training pretrained"
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
model = YOLO()
|
|
model.load("n.pt") # pass any model type
|
|
model(...) # inference
|
|
model.train(data="coco128.yaml", epochs=5)
|
|
```
|
|
|
|
=== "Resume Training"
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
model = YOLO()
|
|
model.resume(task="detect") # resume last detection training
|
|
model.resume(task="detect", model="last.pt") # resume from a given model
|
|
```
|
|
|
|
More functionality coming soon
|
|
|
|
To know more about using `YOLO` models, refer Model class refernce
|
|
|
|
[Model reference](#){ .md-button .md-button--primary}
|
|
|
|
---
|
|
### Customizing Tasks with Trainers
|
|
`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits from `BaseTrainer`.
|
|
You can easily cusotmize Trainers to support custom tasks or explore R&D ideas.
|
|
|
|
!!! tip "Trainer Examples"
|
|
=== "DetectionTrainer"
|
|
```python
|
|
from ultralytics import yolo
|
|
|
|
trainer = yolo.DetectionTrainer(data=..., epochs=1) # override default configs
|
|
trainer.train()
|
|
```
|
|
|
|
=== "SegmentationTrainer"
|
|
```python
|
|
from ultralytics import yolo
|
|
|
|
trainer = yolo.SegmentationTrainer(data=..., epochs=1) # override default configs
|
|
trainer.train()
|
|
```
|
|
=== "ClassificationTrainer"
|
|
```python
|
|
from ultralytics import yolo
|
|
|
|
trainer = yolo.ClassificationTrainer(data=..., epochs=1) # override default configs
|
|
trainer.train()
|
|
```
|
|
|
|
Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization Section. More details about the base engine classes is available in the reference section.
|
|
|
|
[Customization tutorials](#){ .md-button .md-button--primary}
|