15 KiB
YOLOv8 predict mode can generate predictions for various tasks, returning either a list of Results
objects or a
memory-efficient generator of Results
objects when using the streaming mode. Enable streaming mode by
passing stream=True
in the predictor's call method.
!!! example "Predict"
=== "Return a list with `Stream=False`"
```python
inputs = [img, img] # list of numpy arrays
results = model(inputs) # list of Results objects
for result in results:
boxes = result.boxes # Boxes object for bbox outputs
masks = result.masks # Masks object for segmentation masks outputs
probs = result.probs # Class probabilities for classification outputs
```
=== "Return a generator with `Stream=True`"
```python
inputs = [img, img] # list of numpy arrays
results = model(inputs, stream=True) # generator of Results objects
for result in results:
boxes = result.boxes # Boxes object for bbox outputs
masks = result.masks # Masks object for segmentation masks outputs
probs = result.probs # Class probabilities for classification outputs
```
!!! tip "Tip"
Streaming mode with `stream=True` should be used for long videos or large predict sources, otherwise results will accumuate in memory and will eventually cause out-of-memory errors.
Sources
YOLOv8 can accept various input sources, as shown in the table below. This includes images, URLs, PIL images, OpenCV,
numpy arrays, torch tensors, CSV files, videos, directories, globs, YouTube videos, and streams. The table indicates
whether each source can be used in streaming mode with stream=True
✅ and an example argument for each source.
source | model(arg) | type | notes |
---|---|---|---|
image | 'im.jpg' |
str , Path |
|
URL | 'https://ultralytics.com/images/bus.jpg' |
str |
|
screenshot | 'screen' |
str |
|
PIL | Image.open('im.jpg') |
PIL.Image |
HWC, RGB |
OpenCV | cv2.imread('im.jpg')[:,:,::-1] |
np.ndarray |
HWC, BGR to RGB |
numpy | np.zeros((640,1280,3)) |
np.ndarray |
HWC |
torch | torch.zeros(16,3,320,640) |
torch.Tensor |
BCHW, RGB |
CSV | 'sources.csv' |
str , Path |
RTSP, RTMP, HTTP |
video ✅ | 'vid.mp4' |
str , Path |
|
directory ✅ | 'path/' |
str , Path |
|
glob ✅ | 'path/*.jpg' |
str |
Use * operator |
YouTube ✅ | 'https://youtu.be/Zgi9g1ksQHc' |
str |
|
stream ✅ | 'rtsp://example.com/media.mp4' |
str |
RTSP, RTMP, HTTP |
Arguments
model.predict
accepts multiple arguments that control the predction operation. These arguments can be passed directly to model.predict
:
!!! example
model.predict(source, save=True, imgsz=320, conf=0.5)
All supported arguments:
Key | Value | Description |
---|---|---|
source |
'ultralytics/assets' |
source directory for images or videos |
conf |
0.25 |
object confidence threshold for detection |
iou |
0.7 |
intersection over union (IoU) threshold for NMS |
half |
False |
use half precision (FP16) |
device |
None |
device to run on, i.e. cuda device=0/1/2/3 or device=cpu |
show |
False |
show results if possible |
save |
False |
save images with results |
save_txt |
False |
save results as .txt file |
save_conf |
False |
save results with confidence scores |
save_crop |
False |
save cropped images with results |
hide_labels |
False |
hide labels |
hide_conf |
False |
hide confidence scores |
max_det |
300 |
maximum number of detections per image |
vid_stride |
False |
video frame-rate stride |
line_thickness |
3 |
bounding box thickness (pixels) |
visualize |
False |
visualize model features |
augment |
False |
apply image augmentation to prediction sources |
agnostic_nms |
False |
class-agnostic NMS |
retina_masks |
False |
use high-resolution segmentation masks |
classes |
None |
filter results by class, i.e. class=0, or class=[0,2,3] |
boxes |
True |
Show boxes in segmentation predictions |
Image and Video Formats
YOLOv8 supports various image and video formats, as specified in yolo/data/utils.py. See the tables below for the valid suffixes and example predict commands.
Image Suffixes
Image Suffixes | Example Predict Command | Reference |
---|---|---|
.bmp | yolo predict source=image.bmp |
Microsoft BMP File Format |
.dng | yolo predict source=image.dng |
Adobe DNG |
.jpeg | yolo predict source=image.jpeg |
JPEG |
.jpg | yolo predict source=image.jpg |
JPEG |
.mpo | yolo predict source=image.mpo |
Multi Picture Object |
.png | yolo predict source=image.png |
Portable Network Graphics |
.tif | yolo predict source=image.tif |
Tag Image File Format |
.tiff | yolo predict source=image.tiff |
Tag Image File Format |
.webp | yolo predict source=image.webp |
WebP |
.pfm | yolo predict source=image.pfm |
Portable FloatMap |
Video Suffixes
Video Suffixes | Example Predict Command | Reference |
---|---|---|
.asf | yolo predict source=video.asf |
Advanced Systems Format |
.avi | yolo predict source=video.avi |
Audio Video Interleave |
.gif | yolo predict source=video.gif |
Graphics Interchange Format |
.m4v | yolo predict source=video.m4v |
MPEG-4 Part 14 |
.mkv | yolo predict source=video.mkv |
Matroska |
.mov | yolo predict source=video.mov |
QuickTime File Format |
.mp4 | yolo predict source=video.mp4 |
MPEG-4 Part 14 - Wikipedia |
.mpeg | yolo predict source=video.mpeg |
MPEG-1 Part 2 |
.mpg | yolo predict source=video.mpg |
MPEG-1 Part 2 |
.ts | yolo predict source=video.ts |
MPEG Transport Stream |
.wmv | yolo predict source=video.wmv |
Windows Media Video |
.webm | yolo predict source=video.webm |
WebM Project |
Working with Results
The Results
object contains the following components:
Results.boxes
:Boxes
object with properties and methods for manipulating bounding boxesResults.masks
:Masks
object for indexing masks or getting segment coordinatesResults.probs
:torch.Tensor
containing class probabilities or logitsResults.orig_img
: Original image loaded in memoryResults.path
:Path
containing the path to the input image
Each result is composed of a torch.Tensor
by default, which allows for easy manipulation:
!!! example "Results"
```python
results = results.cuda()
results = results.cpu()
results = results.to('cpu')
results = results.numpy()
```
Boxes
Boxes
object can be used to index, manipulate, and convert bounding boxes to different formats. Box format conversion
operations are cached, meaning they're only calculated once per object, and those values are reused for future calls.
- Indexing a
Boxes
object returns aBoxes
object:
!!! example "Boxes"
```python
results = model(img)
boxes = results[0].boxes
box = boxes[0] # returns one box
box.xyxy
```
- Properties and conversions
!!! example "Boxes Properties"
```python
boxes.xyxy # box with xyxy format, (N, 4)
boxes.xywh # box with xywh format, (N, 4)
boxes.xyxyn # box with xyxy format but normalized, (N, 4)
boxes.xywhn # box with xywh format but normalized, (N, 4)
boxes.conf # confidence score, (N, 1)
boxes.cls # cls, (N, 1)
boxes.data # raw bboxes tensor, (N, 6) or boxes.boxes
```
Masks
Masks
object can be used index, manipulate and convert masks to segments. The segment conversion operation is cached.
!!! example "Masks"
```python
results = model(inputs)
masks = results[0].masks # Masks object
masks.xy # x, y segments (pixels), List[segment] * N
masks.xyn # x, y segments (normalized), List[segment] * N
masks.data # raw masks tensor, (N, H, W) or masks.masks
```
probs
probs
attribute of Results
class is a Tensor
containing class probabilities of a classification operation.
!!! example "Probs"
```python
results = model(inputs)
results[0].probs # cls prob, (num_class, )
```
Class reference documentation for Results
module and its components can be found here
Plotting results
You can use plot()
function of Result
object to plot results on in image object. It plots all components(boxes,
masks, classification logits, etc.) found in the results object
!!! example "Plotting"
```python
res = model(img)
res_plotted = res[0].plot()
cv2.imshow("result", res_plotted)
```
Argument | Description |
---|---|
conf (bool) |
Whether to plot the detection confidence score. |
line_width (float, optional) |
The line width of the bounding boxes. If None, it is scaled to the image size. |
font_size (float, optional) |
The font size of the text. If None, it is scaled to the image size. |
font (str) |
The font to use for the text. |
pil (bool) |
Whether to use PIL for image plotting. |
example (str) |
An example string to display. Useful for indicating the expected format of the output. |
img (numpy.ndarray) |
Plot to another image. if not, plot to original image. |
labels (bool) |
Whether to plot the label of bounding boxes. |
boxes (bool) |
Whether to plot the bounding boxes. |
masks (bool) |
Whether to plot the masks. |
probs (bool) |
Whether to plot classification probability. |
Streaming Source for
-loop
Here's a Python script using OpenCV (cv2) and YOLOv8 to run inference on video frames. This script assumes you have already installed the necessary packages (opencv-python and ultralytics).
!!! example "Streaming for-loop"
```python
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
# Open the video file
video_path = "path/to/your/video/file.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 inference on the frame
results = model(frame)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
```