You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
6.1 KiB
142 lines
6.1 KiB
Key Point Estimation is a task that involves identifying the location of specific points in an image, usually referred
|
|
to as keypoints. The keypoints can represent various parts of the object such as joints, landmarks, or other distinctive
|
|
features. The locations of the keypoints are usually represented as a set of 2D `[x, y]` or 3D `[x, y, visible]`
|
|
coordinates.
|
|
|
|
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
|
|
|
The output of a keypoint detector is a set of points that represent the keypoints on the object in the image, usually
|
|
along with the confidence scores for each point. Keypoint estimation is a good choice when you need to identify specific
|
|
parts of an object in a scene, and their location in relation to each other.
|
|
|
|
!!! tip "Tip"
|
|
|
|
YOLOv8 _keypoints_ models use the `-kpts` suffix, i.e. `yolov8n-kpts.pt`. These models are trained on the COCO dataset and are suitable for a variety of keypoint estimation tasks.
|
|
|
|
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8){ .md-button .md-button--primary}
|
|
|
|
## Train TODO
|
|
|
|
Train an OpenPose model on a custom dataset of keypoints using the OpenPose framework. For more information on how to
|
|
train an OpenPose model on a custom dataset, see the OpenPose Training page.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO('yolov8n.yaml') # build a new model from scratch
|
|
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
|
|
|
# Train the model
|
|
model.train(data='coco128.yaml', epochs=100, imgsz=640)
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
|
|
```
|
|
|
|
## Val TODO
|
|
|
|
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's
|
|
training `data` and arguments as model attributes.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO('yolov8n.pt') # load an official model
|
|
model = YOLO('path/to/best.pt') # load a custom model
|
|
|
|
# Validate the model
|
|
metrics = model.val() # no arguments needed, dataset and settings remembered
|
|
metrics.box.map # map50-95
|
|
metrics.box.map50 # map50
|
|
metrics.box.map75 # map75
|
|
metrics.box.maps # a list contains map50-95 of each category
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo detect val model=yolov8n.pt # val official model
|
|
yolo detect val model=path/to/best.pt # val custom model
|
|
```
|
|
|
|
## Predict TODO
|
|
|
|
Use a trained YOLOv8n model to run predictions on images.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO('yolov8n.pt') # load an official model
|
|
model = YOLO('path/to/best.pt') # load a custom model
|
|
|
|
# Predict with the model
|
|
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
|
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
|
```
|
|
|
|
Read more details of `predict` in our [Predict](https://docs.ultralytics.com/modes/predict/) page.
|
|
|
|
## Export TODO
|
|
|
|
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO('yolov8n.pt') # load an official model
|
|
model = YOLO('path/to/best.pt') # load a custom trained
|
|
|
|
# Export the model
|
|
model.export(format='onnx')
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo export model=yolov8n.pt format=onnx # export official model
|
|
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
|
```
|
|
|
|
Available YOLOv8-pose export formats are in the table below. You can predict or validate directly on exported models,
|
|
i.e. `yolo predict model=yolov8n-pose.onnx`.
|
|
|
|
| Format | `format` Argument | Model | Metadata |
|
|
|--------------------------------------------------------------------|-------------------|---------------------------|----------|
|
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ |
|
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ |
|
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ |
|
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ |
|
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ |
|
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | ✅ |
|
|
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ |
|
|
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ |
|
|
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ |
|
|
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ |
|
|
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ |
|
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ |
|