You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
Glenn Jocher 598f17a472
Add global `settings.yaml` in `USER_CONFIG_DIR` (#125)
2 years ago
.github Add Dockerfiles and update Docs README (#124) 2 years ago
docker Add Dockerfiles and update Docs README (#124) 2 years ago
docs Add global `settings.yaml` in `USER_CONFIG_DIR` (#125) 2 years ago
tests Add YOLO8x6 and YAML syntax improvements (#120) 2 years ago
ultralytics Add global `settings.yaml` in `USER_CONFIG_DIR` (#125) 2 years ago
.gitignore Integration of v8 segmentation (#107) 2 years ago
.pre-commit-config.yaml Add Dockerfiles and update Docs README (#124) 2 years ago
CITATION.cff Fix CITATION.cff typos (#64) 2 years ago
CONTRIBUTING.md docs setup (#61) 2 years ago
LICENSE Initial commit 2 years ago
MANIFEST.in Trainer + Dataloaders (#27) 2 years ago
README.md Add Dockerfiles and update Docs README (#124) 2 years ago
mkdocs.yml Add Dockerfiles and update Docs README (#124) 2 years ago
requirements.txt Add CoreML iOS updates (#121) 2 years ago
setup.cfg Flake8 updates (#66) 2 years ago
setup.py docs setup (#61) 2 years ago

README.md

Ultralytics CI

Install

pip install ultralytics

Development

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

Usage

1. CLI

To simply use the latest Ultralytics YOLO models

yolo task=detect    mode=train    model=yolov8n.yaml      args=...
          classify       predict        yolov8n-cls.yaml  args=...
          segment        val            yolov8n-seg.yaml  args=...
                         export         yolov8n.pt        format=onnx

2. Python SDK

To use pythonic interface of Ultralytics YOLO model

from ultralytics import YOLO

model = YOLO.new("yolov8n.yaml")  # create a new model from scratch
model = YOLO.load(
    "yolov8n.pt"
)  # load a pretrained model (recommended for best training results)

results = model.train(data="coco128.yaml", epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source="bus.jpg")
success = model.export(format="onnx")

If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.