You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
5.5 KiB
134 lines
5.5 KiB
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of
|
|
predefined classes.
|
|
|
|
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
|
|
|
The output of an image classifier is a single class label and a confidence score. Image
|
|
classification is useful when you need to know only what class an image belongs to and don't need to know where objects
|
|
of that class are located or what their exact shape is.
|
|
|
|
!!! tip "Tip"
|
|
|
|
YOLOv8 _classification_ models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on ImageNet.
|
|
|
|
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8/cls){.md-button .md-button--primary}
|
|
|
|
## Train
|
|
|
|
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments
|
|
see the [Configuration](../config.md) page.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolov8n-cls.yaml") # build a new model from scratch
|
|
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
|
|
|
# Train the model
|
|
results = model.train(data="mnist160", epochs=100, imgsz=64)
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo task=classify mode=train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
|
|
```
|
|
|
|
## Val
|
|
|
|
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains
|
|
it's training `data` and arguments as model attributes.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolov8n-cls.pt") # load an official model
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
# Validate the model
|
|
results = model.val() # no arguments needed, dataset and settings remembered
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo task=classify mode=val model=yolov8n-cls.pt # val official model
|
|
yolo task=classify mode=val model=path/to/best.pt # val custom model
|
|
```
|
|
|
|
## Predict
|
|
|
|
Use a trained YOLOv8n-cls model to run predictions on images.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolov8n-cls.pt") # load an official model
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
# Predict with the model
|
|
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo task=classify mode=predict model=yolov8n-cls.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
|
yolo task=classify mode=predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
|
```
|
|
|
|
## Export
|
|
|
|
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
|
|
|
!!! example ""
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolov8n-cls.pt") # load an official model
|
|
model = YOLO("path/to/best.pt") # load a custom trained
|
|
|
|
# Export the model
|
|
model.export(format="onnx")
|
|
```
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo mode=export model=yolov8n-cls.pt format=onnx # export official model
|
|
yolo mode=export model=path/to/best.pt format=onnx # export custom trained model
|
|
```
|
|
|
|
Available YOLOv8-cls export formats include:
|
|
|
|
| Format | `format=` | Model |
|
|
|----------------------------------------------------------------------------|---------------|-------------------------------|
|
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` |
|
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` |
|
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` |
|
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` |
|
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` |
|
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` |
|
|
| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` |
|
|
| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` |
|
|
| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` |
|
|
| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` |
|
|
| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` |
|
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` |
|
|
|