9.6 KiB
comments |
---|
true |
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of predefined classes.
The output of an image classifier is a single class label and a confidence score. Image classification is useful when you need to know only what class an image belongs to and don't need to know where objects of that class are located or what their exact shape is.
!!! tip "Tip"
YOLOv8 Classify models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml).
Models
YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset.
Models download automatically from the latest Ultralytics release on first use.
Model | size (pixels) |
acc top1 |
acc top5 |
Speed CPU ONNX (ms) |
Speed A100 TensorRT (ms) |
params (M) |
FLOPs (B) at 640 |
---|---|---|---|---|---|---|---|
YOLOv8n-cls | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
YOLOv8s-cls | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
YOLOv8m-cls | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
YOLOv8l-cls | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
YOLOv8x-cls | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
- acc values are model accuracies on the ImageNet dataset validation set.
Reproduce byyolo val classify data=path/to/ImageNet device=0
- Speed averaged over ImageNet val images using an Amazon EC2 P4d
instance.
Reproduce byyolo val classify data=path/to/ImageNet batch=1 device=0|cpu
Train
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments see the Configuration page.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-cls.yaml') # build a new model from YAML
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n-cls.yaml').load('yolov8n-cls.pt') # build from YAML and transfer weights
# Train the model
model.train(data='mnist160', epochs=100, imgsz=64)
```
=== "CLI"
```bash
# Build a new model from YAML and start training from scratch
yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64
# Start training from a pretrained *.pt model
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
# Build a new model from YAML, transfer pretrained weights to it and start training
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64
```
Dataset format
The YOLO classification dataset format is same as the torchvision format. Each class of images has its own folder and you have to simply pass the path of the dataset folder, i.e, yolo classify train data="path/to/dataset"
dataset/
├── class1/
├── class2/
├── class3/
├── ...
Val
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the model
retains
it's training data
and arguments as model attributes.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-cls.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.top1 # top1 accuracy
metrics.top5 # top5 accuracy
```
=== "CLI"
```bash
yolo classify val model=yolov8n-cls.pt # val official model
yolo classify val model=path/to/best.pt # val custom model
```
Predict
Use a trained YOLOv8n-cls model to run predictions on images.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-cls.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
```
=== "CLI"
```bash
yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
```
See full predict
mode details in the Predict page.
Export
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-cls.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained
# Export the model
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-cls.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
Available YOLOv8-cls export formats are in the table below. You can predict or validate directly on exported models,
i.e. yolo predict model=yolov8n-cls.onnx
. Usage examples are shown for your model after export completes.
Format | format Argument |
Model | Metadata |
---|---|---|---|
PyTorch | - | yolov8n-cls.pt |
✅ |
TorchScript | torchscript |
yolov8n-cls.torchscript |
✅ |
ONNX | onnx |
yolov8n-cls.onnx |
✅ |
OpenVINO | openvino |
yolov8n-cls_openvino_model/ |
✅ |
TensorRT | engine |
yolov8n-cls.engine |
✅ |
CoreML | coreml |
yolov8n-cls.mlmodel |
✅ |
TF SavedModel | saved_model |
yolov8n-cls_saved_model/ |
✅ |
TF GraphDef | pb |
yolov8n-cls.pb |
❌ |
TF Lite | tflite |
yolov8n-cls.tflite |
✅ |
TF Edge TPU | edgetpu |
yolov8n-cls_edgetpu.tflite |
✅ |
TF.js | tfjs |
yolov8n-cls_web_model/ |
✅ |
PaddlePaddle | paddle |
yolov8n-cls_paddle_model/ |
✅ |
See full export
details in the Export page.