You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
276 lines
15 KiB
276 lines
15 KiB
<img width="1024" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png">
|
|
|
|
YOLOv8 **predict mode** can generate predictions for various tasks, returning either a list of `Results` objects or a
|
|
memory-efficient generator of `Results` objects when using the streaming mode. Enable streaming mode by
|
|
passing `stream=True` in the predictor's call method.
|
|
|
|
!!! example "Predict"
|
|
|
|
=== "Return a list with `Stream=False`"
|
|
```python
|
|
inputs = [img, img] # list of numpy arrays
|
|
results = model(inputs) # list of Results objects
|
|
|
|
for result in results:
|
|
boxes = result.boxes # Boxes object for bbox outputs
|
|
masks = result.masks # Masks object for segmentation masks outputs
|
|
probs = result.probs # Class probabilities for classification outputs
|
|
```
|
|
|
|
=== "Return a generator with `Stream=True`"
|
|
```python
|
|
inputs = [img, img] # list of numpy arrays
|
|
results = model(inputs, stream=True) # generator of Results objects
|
|
|
|
for result in results:
|
|
boxes = result.boxes # Boxes object for bbox outputs
|
|
masks = result.masks # Masks object for segmentation masks outputs
|
|
probs = result.probs # Class probabilities for classification outputs
|
|
```
|
|
|
|
!!! tip "Tip"
|
|
|
|
Streaming mode with `stream=True` should be used for long videos or large predict sources, otherwise results will accumuate in memory and will eventually cause out-of-memory errors.
|
|
|
|
## Sources
|
|
|
|
YOLOv8 can accept various input sources, as shown in the table below. This includes images, URLs, PIL images, OpenCV,
|
|
numpy arrays, torch tensors, CSV files, videos, directories, globs, YouTube videos, and streams. The table indicates
|
|
whether each source can be used in streaming mode with `stream=True` ✅ and an example argument for each source.
|
|
|
|
| source | model(arg) | type | notes |
|
|
|-------------|--------------------------------------------|----------------|------------------|
|
|
| image | `'im.jpg'` | `str`, `Path` | |
|
|
| URL | `'https://ultralytics.com/images/bus.jpg'` | `str` | |
|
|
| screenshot | `'screen'` | `str` | |
|
|
| PIL | `Image.open('im.jpg')` | `PIL.Image` | HWC, RGB |
|
|
| OpenCV | `cv2.imread('im.jpg')[:,:,::-1]` | `np.ndarray` | HWC, BGR to RGB |
|
|
| numpy | `np.zeros((640,1280,3))` | `np.ndarray` | HWC |
|
|
| torch | `torch.zeros(16,3,320,640)` | `torch.Tensor` | BCHW, RGB |
|
|
| CSV | `'sources.csv'` | `str`, `Path` | RTSP, RTMP, HTTP |
|
|
| video ✅ | `'vid.mp4'` | `str`, `Path` | |
|
|
| directory ✅ | `'path/'` | `str`, `Path` | |
|
|
| glob ✅ | `'path/*.jpg'` | `str` | Use `*` operator |
|
|
| YouTube ✅ | `'https://youtu.be/Zgi9g1ksQHc'` | `str` | |
|
|
| stream ✅ | `'rtsp://example.com/media.mp4'` | `str` | RTSP, RTMP, HTTP |
|
|
|
|
|
|
## Arguments
|
|
`model.predict` accepts multiple arguments that control the predction operation. These arguments can be passed directly to `model.predict`:
|
|
!!! example
|
|
```
|
|
model.predict(source, save=True, imgsz=320, conf=0.5)
|
|
```
|
|
|
|
All supported arguments:
|
|
|
|
| Key | Value | Description |
|
|
|------------------|------------------------|----------------------------------------------------------|
|
|
| `source` | `'ultralytics/assets'` | source directory for images or videos |
|
|
| `conf` | `0.25` | object confidence threshold for detection |
|
|
| `iou` | `0.7` | intersection over union (IoU) threshold for NMS |
|
|
| `half` | `False` | use half precision (FP16) |
|
|
| `device` | `None` | device to run on, i.e. cuda device=0/1/2/3 or device=cpu |
|
|
| `show` | `False` | show results if possible |
|
|
| `save` | `False` | save images with results |
|
|
| `save_txt` | `False` | save results as .txt file |
|
|
| `save_conf` | `False` | save results with confidence scores |
|
|
| `save_crop` | `False` | save cropped images with results |
|
|
| `hide_labels` | `False` | hide labels |
|
|
| `hide_conf` | `False` | hide confidence scores |
|
|
| `max_det` | `300` | maximum number of detections per image |
|
|
| `vid_stride` | `False` | video frame-rate stride |
|
|
| `line_thickness` | `3` | bounding box thickness (pixels) |
|
|
| `visualize` | `False` | visualize model features |
|
|
| `augment` | `False` | apply image augmentation to prediction sources |
|
|
| `agnostic_nms` | `False` | class-agnostic NMS |
|
|
| `retina_masks` | `False` | use high-resolution segmentation masks |
|
|
| `classes` | `None` | filter results by class, i.e. class=0, or class=[0,2,3] |
|
|
| `boxes` | `True` | Show boxes in segmentation predictions |
|
|
|
|
## Image and Video Formats
|
|
|
|
YOLOv8 supports various image and video formats, as specified
|
|
in [yolo/data/utils.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/utils.py). See the
|
|
tables below for the valid suffixes and example predict commands.
|
|
|
|
### Image Suffixes
|
|
|
|
| Image Suffixes | Example Predict Command | Reference |
|
|
|----------------|----------------------------------|-------------------------------------------------------------------------------|
|
|
| .bmp | `yolo predict source=image.bmp` | [Microsoft BMP File Format](https://en.wikipedia.org/wiki/BMP_file_format) |
|
|
| .dng | `yolo predict source=image.dng` | [Adobe DNG](https://www.adobe.com/products/photoshop/extend.displayTab2.html) |
|
|
| .jpeg | `yolo predict source=image.jpeg` | [JPEG](https://en.wikipedia.org/wiki/JPEG) |
|
|
| .jpg | `yolo predict source=image.jpg` | [JPEG](https://en.wikipedia.org/wiki/JPEG) |
|
|
| .mpo | `yolo predict source=image.mpo` | [Multi Picture Object](https://fileinfo.com/extension/mpo) |
|
|
| .png | `yolo predict source=image.png` | [Portable Network Graphics](https://en.wikipedia.org/wiki/PNG) |
|
|
| .tif | `yolo predict source=image.tif` | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF) |
|
|
| .tiff | `yolo predict source=image.tiff` | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF) |
|
|
| .webp | `yolo predict source=image.webp` | [WebP](https://en.wikipedia.org/wiki/WebP) |
|
|
| .pfm | `yolo predict source=image.pfm` | [Portable FloatMap](https://en.wikipedia.org/wiki/Netpbm#File_formats) |
|
|
|
|
### Video Suffixes
|
|
|
|
| Video Suffixes | Example Predict Command | Reference |
|
|
|----------------|----------------------------------|----------------------------------------------------------------------------------|
|
|
| .asf | `yolo predict source=video.asf` | [Advanced Systems Format](https://en.wikipedia.org/wiki/Advanced_Systems_Format) |
|
|
| .avi | `yolo predict source=video.avi` | [Audio Video Interleave](https://en.wikipedia.org/wiki/Audio_Video_Interleave) |
|
|
| .gif | `yolo predict source=video.gif` | [Graphics Interchange Format](https://en.wikipedia.org/wiki/GIF) |
|
|
| .m4v | `yolo predict source=video.m4v` | [MPEG-4 Part 14](https://en.wikipedia.org/wiki/M4V) |
|
|
| .mkv | `yolo predict source=video.mkv` | [Matroska](https://en.wikipedia.org/wiki/Matroska) |
|
|
| .mov | `yolo predict source=video.mov` | [QuickTime File Format](https://en.wikipedia.org/wiki/QuickTime_File_Format) |
|
|
| .mp4 | `yolo predict source=video.mp4` | [MPEG-4 Part 14 - Wikipedia](https://en.wikipedia.org/wiki/MPEG-4_Part_14) |
|
|
| .mpeg | `yolo predict source=video.mpeg` | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1) |
|
|
| .mpg | `yolo predict source=video.mpg` | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1) |
|
|
| .ts | `yolo predict source=video.ts` | [MPEG Transport Stream](https://en.wikipedia.org/wiki/MPEG_transport_stream) |
|
|
| .wmv | `yolo predict source=video.wmv` | [Windows Media Video](https://en.wikipedia.org/wiki/Windows_Media_Video) |
|
|
| .webm | `yolo predict source=video.webm` | [WebM Project](https://en.wikipedia.org/wiki/WebM) |
|
|
|
|
## Working with Results
|
|
|
|
The `Results` object contains the following components:
|
|
|
|
- `Results.boxes`: `Boxes` object with properties and methods for manipulating bounding boxes
|
|
- `Results.masks`: `Masks` object for indexing masks or getting segment coordinates
|
|
- `Results.probs`: `torch.Tensor` containing class probabilities or logits
|
|
- `Results.orig_img`: Original image loaded in memory
|
|
- `Results.path`: `Path` containing the path to the input image
|
|
|
|
Each result is composed of a `torch.Tensor` by default, which allows for easy manipulation:
|
|
|
|
!!! example "Results"
|
|
|
|
```python
|
|
results = results.cuda()
|
|
results = results.cpu()
|
|
results = results.to('cpu')
|
|
results = results.numpy()
|
|
```
|
|
|
|
### Boxes
|
|
|
|
`Boxes` object can be used to index, manipulate, and convert bounding boxes to different formats. Box format conversion
|
|
operations are cached, meaning they're only calculated once per object, and those values are reused for future calls.
|
|
|
|
- Indexing a `Boxes` object returns a `Boxes` object:
|
|
|
|
!!! example "Boxes"
|
|
|
|
```python
|
|
results = model(img)
|
|
boxes = results[0].boxes
|
|
box = boxes[0] # returns one box
|
|
box.xyxy
|
|
```
|
|
|
|
- Properties and conversions
|
|
|
|
!!! example "Boxes Properties"
|
|
|
|
```python
|
|
boxes.xyxy # box with xyxy format, (N, 4)
|
|
boxes.xywh # box with xywh format, (N, 4)
|
|
boxes.xyxyn # box with xyxy format but normalized, (N, 4)
|
|
boxes.xywhn # box with xywh format but normalized, (N, 4)
|
|
boxes.conf # confidence score, (N, 1)
|
|
boxes.cls # cls, (N, 1)
|
|
boxes.data # raw bboxes tensor, (N, 6) or boxes.boxes
|
|
```
|
|
|
|
### Masks
|
|
|
|
`Masks` object can be used index, manipulate and convert masks to segments. The segment conversion operation is cached.
|
|
|
|
!!! example "Masks"
|
|
|
|
```python
|
|
results = model(inputs)
|
|
masks = results[0].masks # Masks object
|
|
masks.xy # x, y segments (pixels), List[segment] * N
|
|
masks.xyn # x, y segments (normalized), List[segment] * N
|
|
masks.data # raw masks tensor, (N, H, W) or masks.masks
|
|
```
|
|
|
|
### probs
|
|
|
|
`probs` attribute of `Results` class is a `Tensor` containing class probabilities of a classification operation.
|
|
|
|
!!! example "Probs"
|
|
|
|
```python
|
|
results = model(inputs)
|
|
results[0].probs # cls prob, (num_class, )
|
|
```
|
|
|
|
Class reference documentation for `Results` module and its components can be found [here](../reference/yolo/engine/results.md)
|
|
|
|
## Plotting results
|
|
|
|
You can use `plot()` function of `Result` object to plot results on in image object. It plots all components(boxes,
|
|
masks, classification logits, etc.) found in the results object
|
|
|
|
!!! example "Plotting"
|
|
|
|
```python
|
|
res = model(img)
|
|
res_plotted = res[0].plot()
|
|
cv2.imshow("result", res_plotted)
|
|
```
|
|
| Argument | Description |
|
|
|--------------------------------|----------------------------------------------------------------------------------------|
|
|
| `conf (bool)` | Whether to plot the detection confidence score. |
|
|
| `line_width (float, optional)` | The line width of the bounding boxes. If None, it is scaled to the image size. |
|
|
| `font_size (float, optional)` | The font size of the text. If None, it is scaled to the image size. |
|
|
| `font (str)` | The font to use for the text. |
|
|
| `pil (bool)` | Whether to use PIL for image plotting. |
|
|
| `example (str)` | An example string to display. Useful for indicating the expected format of the output. |
|
|
| `img (numpy.ndarray)` | Plot to another image. if not, plot to original image. |
|
|
| `labels (bool)` | Whether to plot the label of bounding boxes. |
|
|
| `boxes (bool)` | Whether to plot the bounding boxes. |
|
|
| `masks (bool)` | Whether to plot the masks. |
|
|
| `probs (bool)` | Whether to plot classification probability. |
|
|
|
|
|
|
## Streaming Source `for`-loop
|
|
|
|
Here's a Python script using OpenCV (cv2) and YOLOv8 to run inference on video frames. This script assumes you have already installed the necessary packages (opencv-python and ultralytics).
|
|
|
|
!!! example "Streaming for-loop"
|
|
|
|
```python
|
|
import cv2
|
|
from ultralytics import YOLO
|
|
|
|
# Load the YOLOv8 model
|
|
model = YOLO('yolov8n.pt')
|
|
|
|
# Open the video file
|
|
video_path = "path/to/your/video/file.mp4"
|
|
cap = cv2.VideoCapture(video_path)
|
|
|
|
# Loop through the video frames
|
|
while cap.isOpened():
|
|
# Read a frame from the video
|
|
success, frame = cap.read()
|
|
|
|
if success:
|
|
# Run YOLOv8 inference on the frame
|
|
results = model(frame)
|
|
|
|
# Visualize the results on the frame
|
|
annotated_frame = results[0].plot()
|
|
|
|
# Display the annotated frame
|
|
cv2.imshow("YOLOv8 Inference", annotated_frame)
|
|
|
|
# Break the loop if 'q' is pressed
|
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
|
break
|
|
else:
|
|
# Break the loop if the end of the video is reached
|
|
break
|
|
|
|
# Release the video capture object and close the display window
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
``` |