Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Mert Can Demir <validatedev@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Fabian Greavu <fabiangreavu@gmail.com> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Eric Pedley <ericpedley@gmail.com> Co-authored-by: JustasBart <40023722+JustasBart@users.noreply.github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Aarni Koskela <akx@iki.fi> Co-authored-by: Sergio Sanchez <sergio.ssm.97@gmail.com> Co-authored-by: Bogdan Gheorghe <112427971+bogdan-galileo@users.noreply.github.com> Co-authored-by: Jaap van de Loosdrecht <jaap@vdlmv.nl> Co-authored-by: Noobtoss <96134731+Noobtoss@users.noreply.github.com> Co-authored-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com> Co-authored-by: Farid Inawan <frdteknikelektro@gmail.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Alexander Duda <Alexander.Duda@me.com> Co-authored-by: Mehran Ghandehari <mehran.maps@gmail.com> Co-authored-by: Snyk bot <snyk-bot@snyk.io> Co-authored-by: majid nasiri <majnasai@gmail.com>
		
			
				
	
	
		
			129 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			129 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ## Models
 | |
| 
 | |
| Welcome to the Ultralytics Models directory! Here you will find a wide variety of pre-configured model configuration
 | |
| files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted
 | |
| and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image
 | |
| segmentation tasks.
 | |
| 
 | |
| These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like
 | |
| instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms,
 | |
| from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this
 | |
| directory provides a great starting point for your custom model development needs.
 | |
| 
 | |
| To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've
 | |
| selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full
 | |
| details at the Ultralytics [Docs](https://docs.ultralytics.com), and if you need help or have any questions, feel free
 | |
| to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now!
 | |
| 
 | |
| ### Usage
 | |
| 
 | |
| Model `*.yaml` files may be used directly in the Command Line Interface (CLI) with a `yolo` command:
 | |
| 
 | |
| ```bash
 | |
| yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
 | |
| ```
 | |
| 
 | |
| They may also be used directly in a Python environment, and accepts the same
 | |
| [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
 | |
| 
 | |
| ```python
 | |
| from ultralytics import YOLO
 | |
| 
 | |
| model = YOLO("model.yaml")  # build a YOLOv8n model from scratch
 | |
| # YOLO("model.pt")  use pre-trained model if available
 | |
| model.info()  # display model information
 | |
| model.train(data="coco128.yaml", epochs=100)  # train the model
 | |
| ```
 | |
| 
 | |
| ## Pre-trained Model Architectures
 | |
| 
 | |
| Ultralytics supports many model architectures. Visit [models](#) page to view detailed information and usage.
 | |
| Any of these models can be used by loading their configs or pretrained checkpoints if available.
 | |
| 
 | |
| <b>What to add your model architecture?</b> [Here's](#) how you can contribute
 | |
| 
 | |
| ### 1. YOLOv8
 | |
| 
 | |
| **About** - Cutting edge Detection, Segmentation, Classification and Pose models developed by Ultralytics. </br>
 | |
| 
 | |
| Available Models:
 | |
| 
 | |
| - Detection - `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x`
 | |
| - Instance Segmentation - `yolov8n-seg`, `yolov8s-seg`, `yolov8m-seg`, `yolov8l-seg`, `yolov8x-seg`
 | |
| - Classification - `yolov8n-cls`, `yolov8s-cls`, `yolov8m-cls`, `yolov8l-cls`, `yolov8x-cls`
 | |
| - Pose - `yolov8n-pose`, `yolov8s-pose`, `yolov8m-pose`, `yolov8l-pose`, `yolov8x-pose`, `yolov8x-pose-p6`
 | |
| 
 | |
| <details><summary>Performance</summary>
 | |
| 
 | |
| ### Detection
 | |
| 
 | |
| | Model                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
 | |
| | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
 | |
| | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640                   | 37.3                 | 80.4                           | 0.99                                | 3.2                | 8.7               |
 | |
| | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640                   | 44.9                 | 128.4                          | 1.20                                | 11.2               | 28.6              |
 | |
| | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640                   | 50.2                 | 234.7                          | 1.83                                | 25.9               | 78.9              |
 | |
| | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640                   | 52.9                 | 375.2                          | 2.39                                | 43.7               | 165.2             |
 | |
| | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640                   | 53.9                 | 479.1                          | 3.53                                | 68.2               | 257.8             |
 | |
| 
 | |
| ### Segmentation
 | |
| 
 | |
| | Model                                                                                        | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
 | |
| | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
 | |
| | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640                   | 36.7                 | 30.5                  | 96.1                           | 1.21                                | 3.4                | 12.6              |
 | |
| | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640                   | 44.6                 | 36.8                  | 155.7                          | 1.47                                | 11.8               | 42.6              |
 | |
| | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640                   | 49.9                 | 40.8                  | 317.0                          | 2.18                                | 27.3               | 110.2             |
 | |
| | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640                   | 52.3                 | 42.6                  | 572.4                          | 2.79                                | 46.0               | 220.5             |
 | |
| | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640                   | 53.4                 | 43.4                  | 712.1                          | 4.02                                | 71.8               | 344.1             |
 | |
| 
 | |
| ### Classification
 | |
| 
 | |
| | Model                                                                                        | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
 | |
| | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
 | |
| | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224                   | 66.6             | 87.0             | 12.9                           | 0.31                                | 2.7                | 4.3                      |
 | |
| | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224                   | 72.3             | 91.1             | 23.4                           | 0.35                                | 6.4                | 13.5                     |
 | |
| | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224                   | 76.4             | 93.2             | 85.4                           | 0.62                                | 17.0               | 42.7                     |
 | |
| | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224                   | 78.0             | 94.1             | 163.0                          | 0.87                                | 37.5               | 99.7                     |
 | |
| | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224                   | 78.4             | 94.3             | 232.0                          | 1.01                                | 57.4               | 154.8                    |
 | |
| 
 | |
| ### Pose
 | |
| 
 | |
| | Model                                                                                                | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>pose<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
 | |
| | ---------------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
 | |
| | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt)       | 640                   | -                    | 49.7                  | -                              | -                                   | 3.3                | 9.2               |
 | |
| | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt)       | 640                   | -                    | 59.2                  | -                              | -                                   | 11.6               | 30.2              |
 | |
| | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt)       | 640                   | -                    | 63.6                  | -                              | -                                   | 26.4               | 81.0              |
 | |
| | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt)       | 640                   | -                    | 67.0                  | -                              | -                                   | 44.4               | 168.6             |
 | |
| | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt)       | 640                   | -                    | 68.9                  | -                              | -                                   | 69.4               | 263.2             |
 | |
| | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280                  | -                    | 71.5                  | -                              | -                                   | 99.1               | 1066.4            |
 | |
| 
 | |
| </details>
 | |
| 
 | |
| ### 2. YOLOv5u
 | |
| 
 | |
| **About** - Anchor-free YOLOv5 models with new detection head and better speed-accuracy tradeoff </br>
 | |
| 
 | |
| Available Models:
 | |
| 
 | |
| - Detection P5/32 - `yolov5nu`, `yolov5su`, `yolov5mu`, `yolov5lu`, `yolov5xu`
 | |
| - Detection P6/64 - `yolov5n6u`, `yolov5s6u`, `yolov5m6u`, `yolov5l6u`, `yolov5x6u`
 | |
| 
 | |
| <details><summary>Performance</summary>
 | |
| 
 | |
| ### Detection
 | |
| 
 | |
| | Model                                                                                    | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
 | |
| | ---------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
 | |
| | [YOLOv5nu](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5nu.pt)   | 640                   | 34.3                 | 73.6                           | 1.06                                | 2.6                | 7.7               |
 | |
| | [YOLOv5su](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5su.pt)   | 640                   | 43.0                 | 120.7                          | 1.27                                | 9.1                | 24.0              |
 | |
| | [YOLOv5mu](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5mu.pt)   | 640                   | 49.0                 | 233.9                          | 1.86                                | 25.1               | 64.2              |
 | |
| | [YOLOv5lu](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5lu.pt)   | 640                   | 52.2                 | 408.4                          | 2.50                                | 53.2               | 135.0             |
 | |
| | [YOLOv5xu](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5xu.pt)   | 640                   | 53.2                 | 763.2                          | 3.81                                | 97.2               | 246.4             |
 | |
| |                                                                                          |                       |                      |                                |                                     |                    |                   |
 | |
| | [YOLOv5n6u](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5n6u.pt) | 1280                  | 42.1                 | -                              | -                                   | 4.3                | 7.8               |
 | |
| | [YOLOv5s6u](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5s6u.pt) | 1280                  | 48.6                 | -                              | -                                   | 15.3               | 24.6              |
 | |
| | [YOLOv5m6u](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5m6u.pt) | 1280                  | 53.6                 | -                              | -                                   | 41.2               | 65.7              |
 | |
| | [YOLOv5l6u](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5l6u.pt) | 1280                  | 55.7                 | -                              | -                                   | 86.1               | 137.4             |
 | |
| | [YOLOv5x6u](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5x6u.pt) | 1280                  | 56.8                 | -                              | -                                   | 155.4              | 250.7             |
 | |
| 
 | |
| </details>
 |