Add Ultralytics tasks and YOLO-NAS models (#2735)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
7
ultralytics/yolo/nas/__init__.py
Normal file
7
ultralytics/yolo/nas/__init__.py
Normal file
@ -0,0 +1,7 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .model import NAS
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
__all__ = 'NASPredictor', 'NASValidator', 'NAS'
|
125
ultralytics/yolo/nas/model.py
Normal file
125
ultralytics/yolo/nas/model.py
Normal file
@ -0,0 +1,125 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
# NAS model interface
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.engine.exporter import Exporter
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, ROOT, is_git_dir
|
||||
from ultralytics.yolo.utils.checks import check_imgsz
|
||||
|
||||
from ...yolo.utils.torch_utils import model_info, smart_inference_mode
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
|
||||
class NAS:
|
||||
|
||||
def __init__(self, model='yolo_nas_s.pt') -> None:
|
||||
# Load or create new NAS model
|
||||
import super_gradients
|
||||
|
||||
self.predictor = None
|
||||
suffix = Path(model).suffix
|
||||
if suffix == '.pt':
|
||||
self._load(model)
|
||||
elif suffix == '':
|
||||
self.model = super_gradients.training.models.get(model, pretrained_weights='coco')
|
||||
self.task = 'detect'
|
||||
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
||||
|
||||
# Standardize model
|
||||
self.model.fuse = lambda verbose: self.model
|
||||
self.model.stride = torch.tensor([32])
|
||||
self.model.names = dict(enumerate(self.model._class_names))
|
||||
self.model.is_fused = lambda: False # for info()
|
||||
self.model.yaml = {} # for info()
|
||||
self.info()
|
||||
|
||||
@smart_inference_mode()
|
||||
def _load(self, weights: str):
|
||||
self.model = torch.load(weights)
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source=None, stream=False, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
|
||||
Args:
|
||||
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
||||
Accepts all source types accepted by the YOLO model.
|
||||
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
||||
**kwargs : Additional keyword arguments passed to the predictor.
|
||||
Check the 'configuration' section in the documentation for all available options.
|
||||
|
||||
Returns:
|
||||
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
|
||||
"""
|
||||
if source is None:
|
||||
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
||||
overrides = dict(conf=0.25, task='detect', mode='predict')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
if not self.predictor:
|
||||
self.predictor = NASPredictor(overrides=overrides)
|
||||
self.predictor.setup_model(model=self.model)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||
return self.predictor(source, stream=stream)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""Function trains models but raises an error as NAS models do not support training."""
|
||||
raise NotImplementedError("NAS models don't support training")
|
||||
|
||||
def val(self, **kwargs):
|
||||
"""Run validation given dataset."""
|
||||
overrides = dict(task='detect', mode='val')
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||
validator = NASValidator(args=args)
|
||||
validator(model=self.model)
|
||||
self.metrics = validator.metrics
|
||||
return validator.metrics
|
||||
|
||||
@smart_inference_mode()
|
||||
def export(self, **kwargs):
|
||||
"""
|
||||
Export model.
|
||||
|
||||
Args:
|
||||
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
overrides = dict(task='detect')
|
||||
overrides.update(kwargs)
|
||||
overrides['mode'] = 'export'
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.task = self.task
|
||||
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
if args.batch == DEFAULT_CFG.batch:
|
||||
args.batch = 1 # default to 1 if not modified
|
||||
return Exporter(overrides=args)(model=self.model)
|
||||
|
||||
def info(self, detailed=False, verbose=True):
|
||||
"""
|
||||
Logs model info.
|
||||
|
||||
Args:
|
||||
detailed (bool): Show detailed information about model.
|
||||
verbose (bool): Controls verbosity.
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
||||
|
||||
def __call__(self, source=None, stream=False, **kwargs):
|
||||
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||
return self.predict(source, stream, **kwargs)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
35
ultralytics/yolo/nas/predict.py
Normal file
35
ultralytics/yolo/nas/predict.py
Normal file
@ -0,0 +1,35 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.engine.predictor import BasePredictor
|
||||
from ultralytics.yolo.engine.results import Results
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.ops import xyxy2xywh
|
||||
|
||||
|
||||
class NASPredictor(BasePredictor):
|
||||
|
||||
def postprocess(self, preds_in, img, orig_imgs):
|
||||
"""Postprocesses predictions and returns a list of Results objects."""
|
||||
|
||||
# Cat boxes and class scores
|
||||
boxes = xyxy2xywh(preds_in[0][0])
|
||||
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
||||
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
classes=self.args.classes)
|
||||
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
if not isinstance(orig_imgs, torch.Tensor):
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||||
return results
|
25
ultralytics/yolo/nas/val.py
Normal file
25
ultralytics/yolo/nas/val.py
Normal file
@ -0,0 +1,25 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.ops import xyxy2xywh
|
||||
from ultralytics.yolo.v8.detect import DetectionValidator
|
||||
|
||||
__all__ = ['NASValidator']
|
||||
|
||||
|
||||
class NASValidator(DetectionValidator):
|
||||
|
||||
def postprocess(self, preds_in):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
boxes = xyxy2xywh(preds_in[0][0])
|
||||
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
||||
return ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=False,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
max_time_img=0.5)
|
Reference in New Issue
Block a user