|
|
@ -9,8 +9,8 @@ from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, PoseModel
|
|
|
|
attempt_load_one_weight, guess_model_task, nn, yaml_model_load)
|
|
|
|
attempt_load_one_weight, guess_model_task, nn, yaml_model_load)
|
|
|
|
from ultralytics.yolo.cfg import get_cfg
|
|
|
|
from ultralytics.yolo.cfg import get_cfg
|
|
|
|
from ultralytics.yolo.engine.exporter import Exporter
|
|
|
|
from ultralytics.yolo.engine.exporter import Exporter
|
|
|
|
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, ROOT, callbacks,
|
|
|
|
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, NUM_THREADS, RANK, ROOT,
|
|
|
|
is_git_dir, yaml_load)
|
|
|
|
callbacks, is_git_dir, yaml_load)
|
|
|
|
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml
|
|
|
|
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml
|
|
|
|
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS
|
|
|
|
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS
|
|
|
|
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
|
|
|
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
|
|
@ -391,7 +391,7 @@ class YOLO:
|
|
|
|
grace_period: int = 10,
|
|
|
|
grace_period: int = 10,
|
|
|
|
gpu_per_trial: int = None,
|
|
|
|
gpu_per_trial: int = None,
|
|
|
|
max_samples: int = 10,
|
|
|
|
max_samples: int = 10,
|
|
|
|
train_args: dict = {}):
|
|
|
|
train_args: dict = None):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Runs hyperparameter tuning using Ray Tune.
|
|
|
|
Runs hyperparameter tuning using Ray Tune.
|
|
|
|
|
|
|
|
|
|
|
@ -409,6 +409,8 @@ class YOLO:
|
|
|
|
Raises:
|
|
|
|
Raises:
|
|
|
|
ModuleNotFoundError: If Ray Tune is not installed.
|
|
|
|
ModuleNotFoundError: If Ray Tune is not installed.
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
if train_args is None:
|
|
|
|
|
|
|
|
train_args = {}
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
from ultralytics.yolo.utils.tuner import (ASHAScheduler, RunConfig, WandbLoggerCallback, default_space,
|
|
|
|
from ultralytics.yolo.utils.tuner import (ASHAScheduler, RunConfig, WandbLoggerCallback, default_space,
|
|
|
@ -443,7 +445,7 @@ class YOLO:
|
|
|
|
space['data'] = data
|
|
|
|
space['data'] = data
|
|
|
|
|
|
|
|
|
|
|
|
# Define the trainable function with allocated resources
|
|
|
|
# Define the trainable function with allocated resources
|
|
|
|
trainable_with_resources = tune.with_resources(_tune, {'cpu': 8, 'gpu': gpu_per_trial if gpu_per_trial else 0})
|
|
|
|
trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0})
|
|
|
|
|
|
|
|
|
|
|
|
# Define the ASHA scheduler for hyperparameter search
|
|
|
|
# Define the ASHA scheduler for hyperparameter search
|
|
|
|
asha_scheduler = ASHAScheduler(time_attr='epoch',
|
|
|
|
asha_scheduler = ASHAScheduler(time_attr='epoch',
|
|
|
@ -454,7 +456,7 @@ class YOLO:
|
|
|
|
reduction_factor=3)
|
|
|
|
reduction_factor=3)
|
|
|
|
|
|
|
|
|
|
|
|
# Define the callbacks for the hyperparameter search
|
|
|
|
# Define the callbacks for the hyperparameter search
|
|
|
|
tuner_callbacks = [WandbLoggerCallback(project='yolov8_tune')] if wandb else []
|
|
|
|
tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else []
|
|
|
|
|
|
|
|
|
|
|
|
# Create the Ray Tune hyperparameter search tuner
|
|
|
|
# Create the Ray Tune hyperparameter search tuner
|
|
|
|
tuner = tune.Tuner(trainable_with_resources,
|
|
|
|
tuner = tune.Tuner(trainable_with_resources,
|
|
|
|