Update docs metadata (#3781)
This commit is contained in:
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore the Ultralytics Utils package, with handy functions like colorstr, yaml_save, set_logging & more, designed to enhance your coding experience.
|
||||
keywords: Ultralytics, Utils, utilitarian functions, colorstr, yaml_save, set_logging, is_kaggle, is_docker, clean_url
|
||||
---
|
||||
|
||||
## SimpleClass
|
||||
---
|
||||
### ::: ultralytics.utils.SimpleClass
|
||||
@ -166,4 +171,4 @@
|
||||
## url2file
|
||||
---
|
||||
### ::: ultralytics.utils.url2file
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore Ultralytics documentation for check_train_batch_size utility in the autobatch module. Understand how it could improve your machine learning process.
|
||||
keywords: Ultralytics, check_train_batch_size, autobatch, utility, machine learning, documentation
|
||||
---
|
||||
|
||||
## check_train_batch_size
|
||||
---
|
||||
### ::: ultralytics.utils.autobatch.check_train_batch_size
|
||||
@ -6,4 +11,4 @@
|
||||
## autobatch
|
||||
---
|
||||
### ::: ultralytics.utils.autobatch.autobatch
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Discover how to profile your models using Ultralytics utilities. Enhance performance, optimize your benchmarks, and learn best practices.
|
||||
keywords: Ultralytics, ProfileModels, benchmarks, model profiling, performance optimization
|
||||
---
|
||||
|
||||
## ProfileModels
|
||||
---
|
||||
### ::: ultralytics.utils.benchmarks.ProfileModels
|
||||
@ -6,4 +11,4 @@
|
||||
## benchmark
|
||||
---
|
||||
### ::: ultralytics.utils.benchmarks.benchmark
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore how to use the on-train, on-validation, on-pretrain, and on-predict callbacks in Ultralytics. Learn to update params, save models, and add integration callbacks.
|
||||
keywords: Ultralytics, Callbacks, On-train, On-validation, On-pretrain, On-predict, Parameters update, Model saving, Integration callbacks
|
||||
---
|
||||
|
||||
## on_pretrain_routine_start
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.base.on_pretrain_routine_start
|
||||
@ -131,4 +136,4 @@
|
||||
## add_integration_callbacks
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.base.add_integration_callbacks
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Uncover the specifics of Ultralytics ClearML callbacks, from pretrain routine start to training end. Boost your ML model performance.
|
||||
keywords: Ultralytics, clearML, callbacks, pretrain routine start, validation end, train epoch end, training end
|
||||
---
|
||||
|
||||
## _log_debug_samples
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.clearml._log_debug_samples
|
||||
@ -31,4 +36,4 @@
|
||||
## on_train_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.clearml.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore comprehensive documentation for utilising Comet Callbacks in Ultralytics. Learn to optimise training, logging, and experiment workflows.
|
||||
keywords: Ultralytics, Comet Callbacks, Training optimisation, Logging, Experiment Workflows
|
||||
---
|
||||
|
||||
## _get_comet_mode
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.comet._get_comet_mode
|
||||
@ -116,4 +121,4 @@
|
||||
## on_train_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.comet.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Browse through Ultralytics YOLO docs to learn about important logging and callback functions used in training and pretraining models.
|
||||
keywords: Ultralytics, YOLO, callbacks, logger, training, pretraining, machine learning, models
|
||||
---
|
||||
|
||||
## _logger_disabled
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.dvc._logger_disabled
|
||||
@ -46,4 +51,4 @@
|
||||
## on_train_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.dvc.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore the detailed information on key Ultralytics callbacks such as on_pretrain_routine_end, on_model_save, on_train_start, and on_predict_start.
|
||||
keywords: Ultralytics, callbacks, on_pretrain_routine_end, on_model_save, on_train_start, on_predict_start, hub, training
|
||||
---
|
||||
|
||||
## on_pretrain_routine_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.hub.on_pretrain_routine_end
|
||||
@ -36,4 +41,4 @@
|
||||
## on_export_start
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.hub.on_export_start
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Understand routines at the end of pre-training and training in Ultralytics. Elevate your MLflow callbacks expertise.
|
||||
keywords: Ultralytics, MLflow, Callbacks, on_pretrain_routine_end, on_train_end, Machine Learning, Training
|
||||
---
|
||||
|
||||
## on_pretrain_routine_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.mlflow.on_pretrain_routine_end
|
||||
@ -11,4 +16,4 @@
|
||||
## on_train_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.mlflow.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore exhaustive details about Ultralytics callbacks in Neptune, with specifics about scalar logging, routine start, and more.
|
||||
keywords: Ultralytics, Neptune callbacks, on_train_epoch_end, on_val_end, _log_plot, _log_images, on_pretrain_routine_start, on_fit_epoch_end, on_train_end
|
||||
---
|
||||
|
||||
## _log_scalars
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.neptune._log_scalars
|
||||
@ -36,4 +41,4 @@
|
||||
## on_train_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.neptune.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,4 +1,9 @@
|
||||
---
|
||||
description: Discover the functionality of the on_fit_epoch_end callback in the Ultralytics YOLO framework. Learn how to end an epoch in your deep learning projects.
|
||||
keywords: Ultralytics, YOLO, on_fit_epoch_end, callbacks, documentation, deep learning, YOLO framework
|
||||
---
|
||||
|
||||
## on_fit_epoch_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.raytune.on_fit_epoch_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore Ultralytics YOLO Docs for a deep understanding of log_scalars, on_batch_end & other callback utilities embedded in the tensorboard module.
|
||||
keywords: Ultralytics, YOLO, documentation, callback utilities, log_scalars, on_batch_end, tensorboard
|
||||
---
|
||||
|
||||
## _log_scalars
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.tensorboard._log_scalars
|
||||
@ -16,4 +21,4 @@
|
||||
## on_fit_epoch_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.tensorboard.on_fit_epoch_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Deep dive into Ultralytics callbacks. Learn how to use the _log_plots, on_fit_epoch_end, and on_train_end functions effectively.
|
||||
keywords: Ultralytics, callbacks, _log_plots, on_fit_epoch_end, on_train_end
|
||||
---
|
||||
|
||||
## _log_plots
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.wb._log_plots
|
||||
@ -21,4 +26,4 @@
|
||||
## on_train_end
|
||||
---
|
||||
### ::: ultralytics.utils.callbacks.wb.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Learn about our routine checks that safeguard Ultralytics operations including ASCII, font, YOLO file, YAML, Python and torchvision checks.
|
||||
keywords: Ultralytics, utility checks, ASCII, check_version, pip_update, check_python, check_torchvision, check_yaml, YOLO filename
|
||||
---
|
||||
|
||||
## is_ascii
|
||||
---
|
||||
### ::: ultralytics.utils.checks.is_ascii
|
||||
@ -86,4 +91,4 @@
|
||||
## print_args
|
||||
---
|
||||
### ::: ultralytics.utils.checks.print_args
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Discover the role of dist.find_free_network_port & dist.generate_ddp_command in Ultralytics DDP utilities. Use our guide for efficient deployment.
|
||||
keywords: Ultralytics, DDP, DDP utility functions, Distributed Data Processing, find free network port, generate DDP command
|
||||
---
|
||||
|
||||
## find_free_network_port
|
||||
---
|
||||
### ::: ultralytics.utils.dist.find_free_network_port
|
||||
@ -16,4 +21,4 @@
|
||||
## ddp_cleanup
|
||||
---
|
||||
### ::: ultralytics.utils.dist.ddp_cleanup
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Learn about the download utilities in Ultralytics YOLO, featuring functions like is_url, check_disk_space, get_github_assets, and download.
|
||||
keywords: Ultralytics, YOLO, download utilities, is_url, check_disk_space, get_github_assets, download, documentation
|
||||
---
|
||||
|
||||
## is_url
|
||||
---
|
||||
### ::: ultralytics.utils.downloads.is_url
|
||||
@ -31,4 +36,4 @@
|
||||
## download
|
||||
---
|
||||
### ::: ultralytics.utils.downloads.download
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,4 +1,9 @@
|
||||
---
|
||||
description: Learn about the HUBModelError in Ultralytics. Enhance your understanding, troubleshoot errors and optimize your machine learning projects.
|
||||
keywords: Ultralytics, HUBModelError, Machine Learning, Error troubleshooting, Ultralytics documentation
|
||||
---
|
||||
|
||||
## HUBModelError
|
||||
---
|
||||
### ::: ultralytics.utils.errors.HUBModelError
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Discover how to use Ultralytics utility functions for file-related operations including incrementing paths, finding file age, checking file size and creating directories.
|
||||
keywords: Ultralytics, utility functions, file operations, working directory, file age, file size, create directories
|
||||
---
|
||||
|
||||
## WorkingDirectory
|
||||
---
|
||||
### ::: ultralytics.utils.files.WorkingDirectory
|
||||
@ -31,4 +36,4 @@
|
||||
## make_dirs
|
||||
---
|
||||
### ::: ultralytics.utils.files.make_dirs
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Dive into Ultralytics detailed utility guide. Learn about Bboxes, _ntuple and more from Ultralytics utils.instance module.
|
||||
keywords: Ultralytics, Bboxes, _ntuple, utility, ultralytics utils.instance
|
||||
---
|
||||
|
||||
## Bboxes
|
||||
---
|
||||
### ::: ultralytics.utils.instance.Bboxes
|
||||
@ -11,4 +16,4 @@
|
||||
## _ntuple
|
||||
---
|
||||
### ::: ultralytics.utils.instance._ntuple
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore Ultralytics' versatile loss functions - VarifocalLoss, BboxLoss, v8DetectionLoss, v8PoseLoss. Improve your accuracy on YOLO implementations.
|
||||
keywords: Ultralytics, Loss functions, VarifocalLoss, BboxLoss, v8DetectionLoss, v8PoseLoss, YOLO, Ultralytics Documentation
|
||||
---
|
||||
|
||||
## VarifocalLoss
|
||||
---
|
||||
### ::: ultralytics.utils.loss.VarifocalLoss
|
||||
@ -36,4 +41,4 @@
|
||||
## v8ClassificationLoss
|
||||
---
|
||||
### ::: ultralytics.utils.loss.v8ClassificationLoss
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore Ultralytics YOLO metrics tools - from confusion matrix, detection metrics, pose metrics to box IOU. Learn how to compute and plot precision-recall curves.
|
||||
keywords: Ultralytics, YOLO, YOLOv3, YOLOv4, metrics, confusion matrix, detection metrics, pose metrics, box IOU, mask IOU, plot precision-recall curves, compute average precision
|
||||
---
|
||||
|
||||
## ConfusionMatrix
|
||||
---
|
||||
### ::: ultralytics.utils.metrics.ConfusionMatrix
|
||||
@ -86,4 +91,4 @@
|
||||
## ap_per_class
|
||||
---
|
||||
### ::: ultralytics.utils.metrics.ap_per_class
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore detailed documentation for Ultralytics utility operations. Learn about methods like segment2box, make_divisible, clip_boxes, and many more.
|
||||
keywords: Ultralytics YOLO, Utility Operations, segment2box, make_divisible, clip_boxes, scale_image, xywh2xyxy, xyxy2xywhn, xywh2ltwh, ltwh2xywh, segments2boxes, crop_mask, process_mask, scale_masks, masks2segments
|
||||
---
|
||||
|
||||
## Profile
|
||||
---
|
||||
### ::: ultralytics.utils.ops.Profile
|
||||
@ -136,4 +141,4 @@
|
||||
## clean_str
|
||||
---
|
||||
### ::: ultralytics.utils.ops.clean_str
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Learn about Ultralytics utils patches including imread, imshow and torch_save. Enhance your image processing skills.
|
||||
keywords: Ultralytics, Utils, Patches, imread, imshow, torch_save, image processing
|
||||
---
|
||||
|
||||
## imread
|
||||
---
|
||||
### ::: ultralytics.utils.patches.imread
|
||||
@ -16,4 +21,4 @@
|
||||
## torch_save
|
||||
---
|
||||
### ::: ultralytics.utils.patches.torch_save
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Master advanced plotting utils from Ultralytics including color annotations, label and image plotting, and feature visualization.
|
||||
keywords: Ultralytics, plotting, utils, color annotation, label plotting, image plotting, feature visualization
|
||||
---
|
||||
|
||||
## Colors
|
||||
---
|
||||
### ::: ultralytics.utils.plotting.Colors
|
||||
@ -36,4 +41,4 @@
|
||||
## feature_visualization
|
||||
---
|
||||
### ::: ultralytics.utils.plotting.feature_visualization
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore Ultralytics utilities for optimized task assignment, bounding box creation, and distance calculation. Learn more about algorithm implementations.
|
||||
keywords: Ultralytics, task aligned assigner, select highest overlaps, make anchors, dist2bbox, bbox2dist, utilities, algorithm
|
||||
---
|
||||
|
||||
## TaskAlignedAssigner
|
||||
---
|
||||
### ::: ultralytics.utils.tal.TaskAlignedAssigner
|
||||
@ -26,4 +31,4 @@
|
||||
## bbox2dist
|
||||
---
|
||||
### ::: ultralytics.utils.tal.bbox2dist
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,8 @@
|
||||
---
|
||||
description: Explore Ultralytics-tailored torch utility features like Model EMA, early stopping, smart inference, image scaling, get_flops, and many more.
|
||||
keywords: Ultralytics, Torch Utils, Model EMA, Early Stopping, Smart Inference, Get CPU Info, Time Sync, Fuse Deconv and bn, Get num params, Get FLOPs, Scale img, Copy attr, Intersect dicts, De_parallel, Init seeds, Profile
|
||||
---
|
||||
|
||||
## ModelEMA
|
||||
---
|
||||
### ::: ultralytics.utils.torch_utils.ModelEMA
|
||||
@ -131,4 +136,4 @@
|
||||
## profile
|
||||
---
|
||||
### ::: ultralytics.utils.torch_utils.profile
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,4 +1,9 @@
|
||||
---
|
||||
description: Learn to utilize the run_ray_tune function with Ultralytics. Make your machine learning tuning process easier and more efficient.
|
||||
keywords: Ultralytics, run_ray_tune, machine learning tuning, machine learning efficiency
|
||||
---
|
||||
|
||||
## run_ray_tune
|
||||
---
|
||||
### ::: ultralytics.utils.tuner.run_ray_tune
|
||||
<br><br>
|
||||
<br><br>
|
Reference in New Issue
Block a user