Fix `MKL_THREADING_LAYER` bug in DDP Docker training (#3770)

single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 620f3eb218
commit e324af6a12
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -3,7 +3,7 @@
# Image is CUDA-optimized for YOLOv8 single/multi-GPU training and inference
# Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3
FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime
RUN pip install --no-cache nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com
# Downloads to user config dir
@ -31,6 +31,8 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e . albumentations comet thop pycocotools onnx onnx-simplifier onnxruntime-gpu
# Avoid DDP error "MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library"
RUN pip install -U numpy
# Set environment variables
ENV OMP_NUM_THREADS=1

Loading…
Cancel
Save