Update docs metadata (#3781)

This commit is contained in:
Glenn Jocher
2023-07-17 12:40:04 +02:00
committed by GitHub
parent e324af6a12
commit e8030316f6
194 changed files with 783 additions and 308 deletions

View File

@ -1,7 +1,7 @@
---
comments: true
description: Run YOLO models on your Android device for real-time object detection with Ultralytics Android App. Utilizes TensorFlow Lite and hardware delegates.
keywords: Ultralytics, Android, app, YOLO models, real-time object detection, TensorFlow Lite, quantization, acceleration, delegates, performance variability
description: Learn about the Ultralytics Android App, enabling real-time object detection using YOLO models. Discover in-app features, quantization methods, and delegate options for optimal performance.
keywords: Ultralytics, Android App, real-time object detection, YOLO models, TensorFlow Lite, FP16 quantization, INT8 quantization, CPU, GPU, Hexagon, NNAPI
---
# Ultralytics Android App: Real-time Object Detection with YOLO Models

View File

@ -1,7 +1,7 @@
---
comments: true
description: Experience the power of YOLOv5 and YOLOv8 models with Ultralytics HUB app. Download from Google Play and App Store now.
keywords: Ultralytics, HUB, App, Mobile, Object Detection, Image Recognition, YOLOv5, YOLOv8, Hardware Acceleration, Custom Model Training, iOS, Android
description: Explore the Ultralytics HUB App, offering the ability to run YOLOv5 and YOLOv8 models on your iOS and Android devices with optimized performance.
keywords: Ultralytics, HUB App, YOLOv5, YOLOv8, mobile AI, real-time object detection, image recognition, mobile device, hardware acceleration, Apple Neural Engine, Android GPU, NNAPI, custom model training
---
# Ultralytics HUB App

View File

@ -1,7 +1,7 @@
---
comments: true
description: Get started with the Ultralytics iOS app and run YOLO models in real-time for object detection on your iPhone or iPad with the Apple Neural Engine.
keywords: YOLO, object detection, iOS app, Ultralytics, Apple Neural Engine, quantization, FP16, INT8, Core ML, machine learning
description: Execute object detection in real-time on your iOS devices utilizing YOLO models. Leverage the power of the Apple Neural Engine and Core ML for fast and efficient object detection.
keywords: Ultralytics, iOS app, object detection, YOLO models, real time, Apple Neural Engine, Core ML, FP16, INT8, quantization
---
# Ultralytics iOS App: Real-time Object Detection with YOLO Models