|
|
|
@ -133,6 +133,7 @@ class BaseTrainer:
|
|
|
|
|
"""
|
|
|
|
|
Builds dataloaders and optimizer on correct rank process
|
|
|
|
|
"""
|
|
|
|
|
self.set_model_attributes()
|
|
|
|
|
self.optimizer = build_optimizer(model=self.model,
|
|
|
|
|
name=self.args.optimizer,
|
|
|
|
|
lr=self.args.lr0,
|
|
|
|
@ -146,19 +147,6 @@ class BaseTrainer:
|
|
|
|
|
print("created testloader :", rank)
|
|
|
|
|
self.console.info(self.progress_string())
|
|
|
|
|
|
|
|
|
|
def _set_model_attributes(self):
|
|
|
|
|
# TODO: fix and use after self.data_dict is available
|
|
|
|
|
'''
|
|
|
|
|
head = utils.torch_utils.de_parallel(self.model).model[-1]
|
|
|
|
|
self.args.box *= 3 / head.nl # scale to layers
|
|
|
|
|
self.args.cls *= head.nc / 80 * 3 / head.nl # scale to classes and layers
|
|
|
|
|
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
|
|
|
|
|
model.nc = nc # attach number of classes to model
|
|
|
|
|
model.hyp = hyp # attach hyperparameters to model
|
|
|
|
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
|
|
|
|
model.names = names
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
def _do_train(self, rank, world_size):
|
|
|
|
|
if world_size > 1:
|
|
|
|
|
self._setup_ddp(rank, world_size)
|
|
|
|
@ -302,6 +290,12 @@ class BaseTrainer:
|
|
|
|
|
if not self.best_fitness or self.best_fitness < self.fitness:
|
|
|
|
|
self.best_fitness = self.fitness
|
|
|
|
|
|
|
|
|
|
def set_model_attributes(self):
|
|
|
|
|
"""
|
|
|
|
|
To set or update model parameters before training.
|
|
|
|
|
"""
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def build_targets(self, preds, targets):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|