Update docs (#71)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent e629335f6d
commit d85b44f259
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,109 @@
## Ultralytics YOLO
Default training settings and hyperparameters for medium-augmentation COCO training
### Setting the operation type
???+ note "Operation"
| Key | Value | Description |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| task | `detect` | Set the task via CLI. See Tasks for all supported tasks like - `detect`, `segment`, `classify`.<br> - `init` is a special case that creates a copy of default.yaml configs to the current working dir |
| mode | `train` | Set the mode via CLI. It can be `train`, `val`, `predict` |
| resume | `False` | Resume last given task when set to `True`. <br> Resume from a given checkpoint is `model.pt` is passed |
| model | null | Set the model. Format can differ for task type. Supports `model_name`, `model.yaml` & `model.pt` |
| data | null | Set the data. Format can differ for task type. Supports `data.yaml`, `data_folder`, `dataset_name`|
### Training settings
??? note "Train"
| Key | Value | Description |
|------------------|--------|---------------------------------------------------------------------------------|
| device | '' | cuda device, i.e. 0 or 0,1,2,3 or cpu. `''` selects available cuda 0 device |
| epochs | 100 | Number of epochs to train |
| workers | 8 | Number of cpu workers used per process. Scales automatically with DDP |
| batch_size | 16 | Batch size of the dataloader |
| img_size | 640 | Image size of data in dataloader |
| optimizer | SGD | Optimizer used. Supported optimizer are: `Adam`, `SGD`, `RMSProp` |
| single_cls | False | Train on multi-class data as single-class |
| image_weights | False | Use weighted image selection for training |
| rect | False | Enable rectangular training |
| cos_lr | False | Use cosine LR scheduler |
| lr0 | 0.01 | Initial learning rate |
| lrf | 0.01 | Final OneCycleLR learning rate |
| momentum | 0.937 | Use as `momentum` for SGD and `beta1` for Adam |
| weight_decay | 0.0005 | Optimizer weight decay |
| warmup_epochs | 3.0 | Warmup epochs. Fractions are ok. |
| warmup_momentum | 0.8 | Warmup initial momentum |
| warmup_bias_lr | 0.1 | Warmup initial bias lr |
| box | 0.05 | Box loss gain |
| cls | 0.5 | cls loss gain |
| cls_pw | 1.0 | cls BCELoss positive_weight |
| obj | 1.0 | bj loss gain (scale with pixels) |
| obj_pw | 1.0 | obj BCELoss positive_weight |
| iou_t | 0.20 | IOU training threshold |
| anchor_t | 4.0 | anchor-multiple threshold |
| fl_gamma | 0.0 | focal loss gamma |
| label_smoothing | 0.0 | |
| nbs | 64 | nominal batch size |
| overlap_mask | `True` | **Segmentation**: Use mask overlapping during training |
| mask_ratio | 4 | **Segmentation**: Set mask downsampling |
| dropout | `False`| **Classification**: Use dropout while training |
### Prediction Settings
??? note "Prediction"
| Key | Value | Description |
|----------------|----------------------|----------------------------------------------------|
| source | `ultralytics/assets` | Input source. Accepts image, folder, video, url |
| view_img | `False` | View the prediction images |
| save_txt | `False` | Save the results in a txt file |
| save_conf | `False` | Save the condidence scores |
| save_crop | `Fasle` | |
| hide_labels | `False` | Hide the labels |
| hide_conf | `False` | Hide the confidence scores |
| vid_stride | `False` | Input video frame-rate stride |
| line_thickness | `3` | Bounding-box thickness (pixels) |
| visualize | `False` | Visualize model features |
| augment | `False` | Augmented inference |
| agnostic_nms | `False` | Class-agnostic NMS |
| retina_masks | `False` | **Segmentation:** High resolution masks |
### Validation settings
??? note "Validation"
| Key | Value | Description |
|-------------|---------|-----------------------------------|
| noval | `False` | ??? |
| save_json | `False` | |
| save_hybrid | `False` | |
| conf_thres | `0.001` | Confidence threshold |
| iou_thres | `0.6` | IoU threshold |
| max_det | `300` | Maximum number of detections |
| half | `True` | Use .half() mode. |
| dnn | `False` | Use OpenCV DNN for ONNX inference |
| plots | `False` | |
### Augmentation settings
??? note "Augmentation"
| hsv_h | 0.015 | Image HSV-Hue augmentation (fraction) |
|-------------|-------|-------------------------------------------------|
| hsv_s | 0.7 | Image HSV-Saturation augmentation (fraction) |
| hsv_v | 0.4 | Image HSV-Value augmentation (fraction) |
| degrees | 0.0 | Image rotation (+/- deg) |
| translate | 0.1 | Image translation (+/- fraction) |
| scale | 0.5 | Image scale (+/- gain) |
| shear | 0.0 | Image shear (+/- deg) |
| perspective | 0.0 | Image perspective (+/- fraction), range 0-0.001 |
| flipud | 0.0 | Image flip up-down (probability) |
| fliplr | 0.5 | Image flip left-right (probability) |
| mosaic | 1.0 | Image mosaic (probability) |
| mixup | 0.0 | Image mixup (probability) |
| copy_paste | 0.0 | Segment copy-paste (probability) |
### Logging, checkpoints, plotting and file management
??? note "files"
| Key | Value | Description |
|-----------|---------|---------------------------------------------------------------------------------------------|
| project: | 'runs' | The project name |
| name: | 'exp' | The run name. `exp` gets automatically incremented if not specified, i.e, `exp`, `exp2` ... |
| exist_ok: | `False` | ??? |
| plots | `False` | **Validation**: Save plots while validation |
| nosave | `False` | Don't save any plots, models or files |

@ -37,6 +37,7 @@ Ultralytics YOLO comes with pythonic Model and Trainer interface.
```python
import ultralytics
from ultralytics import YOLO
model = YOLO()
model.new("s-seg.yaml") # automatically detects task type
model.load("s-seg.pt") # load checkpoint

@ -0,0 +1,5 @@
All task Trainers are inherited from `BaseTrainer` class that contains the model training and optimzation routine boilerplate. You can override any function of these Trainers to suit your needs.
---
### BaseTrainer API Reference
:::ultralytics.yolo.engine.trainer.BaseTrainer

@ -0,0 +1 @@
::: ultralytics.yolo.engine.model

@ -1,11 +1,70 @@
# Python SDK
## Using YOLO models
This is the simplest way of simply using yolo models in a python environment. It can be imported from the `ultralytics` module.
We provide 2 pythonic interfaces for YOLO models:
!!! example "Usage"
=== "Training"
```python
from ultralytics import YOLO
<b> Model Interface </b> - To simply build, load, train or run inference on a model in a python application
model = YOLO()
model.new("n.yaml") # pass any model type
model.train(data="coco128.yaml", epochs=5)
```
<b> Trainer Interface </b> - To customize trainier elements depending on the task. Suitable for R&D ideas like architecutres.
=== "Training pretrained"
```python
from ultralytics import YOLO
______________________________________________________________________
model = YOLO()
model.load("n.pt") # pass any model type
model(...) # inference
model.train(data="coco128.yaml", epochs=5)
```
### Model Interface
=== "Resume Training"
```python
from ultralytics import YOLO
model = YOLO()
model.resume(task="detect") # resume last detection training
model.resume(task="detect", model="last.pt") # resume from a given model
```
More functionality coming soon
To know more about using `YOLO` models, refer Model class refernce
[Model reference](#){ .md-button .md-button--primary}
---
### Customizing Tasks with Trainers
`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits from `BaseTrainer`.
You can easily cusotmize Trainers to support custom tasks or explore R&D ideas.
!!! tip "Trainer Examples"
=== "DetectionTrainer"
```python
from ultralytics import yolo
trainer = yolo.DetectionTrainer(data=..., epochs=1) # override default configs
trainer.train()
```
=== "SegmentationTrainer"
```python
from ultralytics import yolo
trainer = yolo.SegmentationTrainer(data=..., epochs=1) # override default configs
trainer.train()
```
=== "ClassificationTrainer"
```python
from ultralytics import yolo
trainer = yolo.ClassificationTrainer(data=..., epochs=1) # override default configs
trainer.train()
```
Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization Section. More details about the base engine classes is available in the reference section.
[Customization tutorials](#){ .md-button .md-button--primary}

@ -0,0 +1,31 @@
th, td {
border: 1px solid var(--md-typeset-table-color);
border-spacing: 0px;
border-bottom: none;
border-left: none;
border-top: none;
}
.md-typeset__table {
line-height: 1;
}
.md-typeset__table table:not([class]) {
font-size: .74rem;
border-right: none;
}
.md-typeset__table table:not([class]) td,
.md-typeset__table table:not([class]) th {
padding: 15px;
}
/* light mode alternating table bg colors */
.md-typeset__table tr:nth-child(2n) {
background-color: #f8f8f8;
}
/* dark mode alternating table bg colors */
[data-md-color-scheme="slate"] .md-typeset__table tr:nth-child(2n) {
background-color: hsla(var(--md-hue),25%,25%,1)
}

@ -41,13 +41,16 @@ theme:
- search.suggest
- toc.follow
extra_css:
- stylesheets/style.css
markdown_extensions:
# Div text decorators
- admonition
- pymdownx.details
- pymdownx.superfences
- tables
- attr_list
# Syntax highlight
- pymdownx.highlight:
anchor_linenums: true
@ -75,11 +78,18 @@ plugins:
nav:
- Quickstart: quickstart.md
- CLI: cli.md
- Python SDK: sdk.md
- Trainer: trainer.md
- Python Interface: sdk.md
- Configuration: conf.md
- Tasks:
- Detection: tasks/detection.md
- Segmentation: tasks/segmentation.md
- Classification: tasks/classification.md
- Reference: reference/ref.md
- Customization Tutorials:
- Customize Trainer: customize/train.md
- Customize Validator: customize/val.md
- Customize Predictor: customize/predict.md
- Reference:
- YOLO Models: reference/model.md
- Trainer :
- BaseTrainer: reference/base_trainer.md

@ -1,26 +1,31 @@
"""
Top-level YOLO model interface. First principle usage example - https://github.com/ultralytics/ultralytics/issues/13
"""
import torch
import yaml
from ultralytics import yolo
from ultralytics.yolo.utils import LOGGER
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.files import yaml_load
from ultralytics.yolo.utils.modeling import attempt_load_weights
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
# map head: [model, trainer]
MODEL_MAP = {
"classify": [ClassificationModel, 'yolo.VERSION.classify.ClassificationTrainer'],
"detect": [DetectionModel, 'yolo.VERSION.detect.DetectionTrainer'],
"segment": [SegmentationModel, 'yolo.VERSION.segment.SegmentationTrainer']}
"classify": [ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer'],
"detect": [DetectionModel, 'yolo.TYPE.detect.DetectionTrainer'],
"segment": [SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer']}
class YOLO:
"""
Python interface which emulates a model-like behaviour by wrapping trainers.
"""
def __init__(self, version=8) -> None:
self.version = version
def __init__(self, type="v8") -> None:
"""
Args:
type (str): Type/version of models to use
"""
self.type = type
self.ModelClass = None
self.TrainerClass = None
self.model = None
@ -29,20 +34,36 @@ class YOLO:
self.ckpt = None
def new(self, cfg: str):
"""
Initializes a new model and infers the task type from the model definitions
Args:
cfg (str): model configuration file
"""
cfg = check_yaml(cfg) # check YAML
with open(cfg, encoding='ascii', errors='ignore') as f:
cfg = yaml.safe_load(f) # model dict
self.ModelClass, self.TrainerClass, self.task = self._guess_model_trainer_and_task(cfg["head"][-1][-2])
self.model = self.ModelClass(cfg) # initialize
def load(self, weights):
def load(self, weights: str):
"""
Initializes a new model and infers the task type from the model head
Args:
weights (str): model checkpoint to be loaded
"""
self.ckpt = torch.load(weights, map_location="cpu")
self.task = self.ckpt["train_args"]["task"]
_, trainer_class_literal = MODEL_MAP[self.task]
self.TrainerClass = eval(trainer_class_literal.replace("VERSION", f"v{self.version}"))
self.TrainerClass = eval(trainer_class_literal.replace("TYPE", f"v{self.type}"))
self.model = attempt_load_weights(weights)
def reset(self):
"""
Resets the model modules .
"""
for m in self.model.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
@ -50,32 +71,46 @@ class YOLO:
p.requires_grad = True
def train(self, **kwargs):
if 'data' not in kwargs:
raise Exception("data is required to train")
"""
Trains the model on given dataset.
Args:
**kwargs (Any): Any number of arguments representing the training configuration. List of all args can be found in 'config' section.
You can pass all arguments as a yaml file in `cfg`. Other args are ignored if `cfg` file is passed
"""
if not self.model and not self.ckpt:
raise Exception("model not initialized. Use .new() or .load()")
kwargs["task"] = self.task
kwargs["mode"] = "train"
self.trainer = self.TrainerClass(overrides=kwargs)
overrides = kwargs
if kwargs.get("cfg"):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs["cfg"]))
overrides["task"] = self.task
overrides["mode"] = "train"
if not overrides.get("data"):
raise Exception("dataset not provided! Please check if you have defined `data` in you configs")
self.trainer = self.TrainerClass(overrides=overrides)
# load pre-trained weights if found, else use the loaded model
self.trainer.model = self.trainer.load_model(weights=self.ckpt) if self.ckpt else self.model
self.trainer.train()
def resume(self, task=None, model=None):
if not task:
raise Exception(
"pass the task type and/or model(optional) from which you want to resume: `model.resume(task="
")`")
def resume(self, task, model=None):
"""
Resume a training task.
Args:
task (str): The task type you want to resume. Automatically finds the last run to resume if `model` is not specified.
model (str): [Optional] The model checkpoint to resume from. If not found, the last run of the given task type is resumed.
"""
if task.lower() not in MODEL_MAP:
raise Exception(f"unrecognised task - {task}. Supported tasks are {MODEL_MAP.keys()}")
_, trainer_class_literal = MODEL_MAP[task.lower()]
self.TrainerClass = eval(trainer_class_literal.replace("VERSION", f"v{self.version}"))
self.TrainerClass = eval(trainer_class_literal.replace("TYPE", f"v{self.type}"))
self.trainer = self.TrainerClass(overrides={"task": task.lower(), "resume": model if model else True})
self.trainer.train()
def _guess_model_trainer_and_task(self, head):
# TODO: warn
task = None
if head.lower() in ["classify", "classifier", "cls", "fc"]:
task = "classify"
@ -85,7 +120,7 @@ class YOLO:
task = "segment"
model_class, trainer_class = MODEL_MAP[task]
# warning: eval is unsafe. Use with caution
trainer_class = eval(trainer_class.replace("VERSION", f"v{self.version}"))
trainer_class = eval(trainer_class.replace("TYPE", f"{self.type}"))
return model_class, trainer_class, task

@ -35,8 +35,8 @@ RANK = int(os.getenv('RANK', -1))
class BaseTrainer:
def __init__(self, config=DEFAULT_CONFIG, overrides={}):
self.args = get_config(config, overrides)
def __init__(self, cfg=DEFAULT_CONFIG, overrides={}):
self.args = get_config(cfg, overrides)
self.check_resume()
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)

Loading…
Cancel
Save