|
|
|
@ -84,7 +84,7 @@ class Annotator:
|
|
|
|
|
thickness=tf,
|
|
|
|
|
lineType=cv2.LINE_AA)
|
|
|
|
|
|
|
|
|
|
def masks(self, masks, colors, im_gpu=None, alpha=0.5):
|
|
|
|
|
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
|
|
|
|
|
"""Plot masks at once.
|
|
|
|
|
Args:
|
|
|
|
|
masks (tensor): predicted masks on cuda, shape: [n, h, w]
|
|
|
|
@ -95,37 +95,21 @@ class Annotator:
|
|
|
|
|
if self.pil:
|
|
|
|
|
# convert to numpy first
|
|
|
|
|
self.im = np.asarray(self.im).copy()
|
|
|
|
|
if im_gpu is None:
|
|
|
|
|
# Add multiple masks of shape(h,w,n) with colors list([r,g,b], [r,g,b], ...)
|
|
|
|
|
if len(masks) == 0:
|
|
|
|
|
return
|
|
|
|
|
if isinstance(masks, torch.Tensor):
|
|
|
|
|
masks = torch.as_tensor(masks, dtype=torch.uint8)
|
|
|
|
|
masks = masks.permute(1, 2, 0).contiguous()
|
|
|
|
|
masks = masks.cpu().numpy()
|
|
|
|
|
# masks = np.ascontiguousarray(masks.transpose(1, 2, 0))
|
|
|
|
|
masks = scale_image(masks.shape[:2], masks, self.im.shape)
|
|
|
|
|
masks = np.asarray(masks, dtype=np.float32)
|
|
|
|
|
colors = np.asarray(colors, dtype=np.float32) # shape(n,3)
|
|
|
|
|
s = masks.sum(2, keepdims=True).clip(0, 1) # add all masks together
|
|
|
|
|
masks = (masks @ colors).clip(0, 255) # (h,w,n) @ (n,3) = (h,w,3)
|
|
|
|
|
self.im[:] = masks * alpha + self.im * (1 - s * alpha)
|
|
|
|
|
else:
|
|
|
|
|
if len(masks) == 0:
|
|
|
|
|
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
|
|
|
|
|
colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
|
|
|
|
|
colors = colors[:, None, None] # shape(n,1,1,3)
|
|
|
|
|
masks = masks.unsqueeze(3) # shape(n,h,w,1)
|
|
|
|
|
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
|
|
|
|
|
|
|
|
|
|
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
|
|
|
|
|
mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
|
|
|
|
|
|
|
|
|
|
im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
|
|
|
|
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
|
|
|
|
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
|
|
|
|
|
im_mask = (im_gpu * 255).byte().cpu().numpy()
|
|
|
|
|
self.im[:] = scale_image(im_gpu.shape, im_mask, self.im.shape)
|
|
|
|
|
if len(masks) == 0:
|
|
|
|
|
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
|
|
|
|
|
colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
|
|
|
|
|
colors = colors[:, None, None] # shape(n,1,1,3)
|
|
|
|
|
masks = masks.unsqueeze(3) # shape(n,h,w,1)
|
|
|
|
|
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
|
|
|
|
|
|
|
|
|
|
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
|
|
|
|
|
mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
|
|
|
|
|
|
|
|
|
|
im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
|
|
|
|
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
|
|
|
|
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
|
|
|
|
|
im_mask = (im_gpu * 255).byte().cpu().numpy()
|
|
|
|
|
self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape)
|
|
|
|
|
if self.pil:
|
|
|
|
|
# convert im back to PIL and update draw
|
|
|
|
|
self.fromarray(self.im)
|
|
|
|
@ -186,15 +170,14 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@threaded
|
|
|
|
|
def plot_images_and_masks(images,
|
|
|
|
|
batch_idx,
|
|
|
|
|
cls,
|
|
|
|
|
bboxes,
|
|
|
|
|
masks,
|
|
|
|
|
confs=None,
|
|
|
|
|
paths=None,
|
|
|
|
|
fname='images.jpg',
|
|
|
|
|
names=None):
|
|
|
|
|
def plot_images(images,
|
|
|
|
|
batch_idx,
|
|
|
|
|
cls,
|
|
|
|
|
bboxes,
|
|
|
|
|
masks=np.zeros(0, dtype=np.uint8),
|
|
|
|
|
paths=None,
|
|
|
|
|
fname='images.jpg',
|
|
|
|
|
names=None):
|
|
|
|
|
# Plot image grid with labels
|
|
|
|
|
if isinstance(images, torch.Tensor):
|
|
|
|
|
images = images.cpu().float().numpy()
|
|
|
|
@ -242,10 +225,10 @@ def plot_images_and_masks(images,
|
|
|
|
|
if len(cls) > 0:
|
|
|
|
|
idx = batch_idx == i
|
|
|
|
|
|
|
|
|
|
boxes = xywh2xyxy(bboxes[idx]).T
|
|
|
|
|
boxes = xywh2xyxy(bboxes[idx, :4]).T
|
|
|
|
|
classes = cls[idx].astype('int')
|
|
|
|
|
labels = confs is None # labels if no conf column
|
|
|
|
|
conf = None if labels else confs[idx] # check for confidence presence (label vs pred)
|
|
|
|
|
labels = bboxes.shape[1] == 4 # labels if no conf column
|
|
|
|
|
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
|
|
|
|
|
|
|
|
|
|
if boxes.shape[1]:
|
|
|
|
|
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
|
|
|
@ -291,38 +274,34 @@ def plot_images_and_masks(images,
|
|
|
|
|
annotator.im.save(fname) # save
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_results_with_masks(file="path/to/results.csv", dir="", best=True):
|
|
|
|
|
def plot_results(file='path/to/results.csv', dir='', segment=False):
|
|
|
|
|
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
|
|
|
|
save_dir = Path(file).parent if file else Path(dir)
|
|
|
|
|
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
|
|
|
|
if segment:
|
|
|
|
|
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
|
|
|
|
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
|
|
|
|
|
else:
|
|
|
|
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
|
|
|
|
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
|
|
|
|
|
ax = ax.ravel()
|
|
|
|
|
files = list(save_dir.glob("results*.csv"))
|
|
|
|
|
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
|
|
|
|
|
files = list(save_dir.glob('results*.csv'))
|
|
|
|
|
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
|
|
|
|
|
for f in files:
|
|
|
|
|
try:
|
|
|
|
|
data = pd.read_csv(f)
|
|
|
|
|
index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
|
|
|
|
|
0.1 * data.values[:, 11])
|
|
|
|
|
s = [x.strip() for x in data.columns]
|
|
|
|
|
x = data.values[:, 0]
|
|
|
|
|
for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
|
|
|
|
|
y = data.values[:, j]
|
|
|
|
|
for i, j in enumerate(index):
|
|
|
|
|
y = data.values[:, j].astype('float')
|
|
|
|
|
# y[y == 0] = np.nan # don't show zero values
|
|
|
|
|
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2)
|
|
|
|
|
if best:
|
|
|
|
|
# best
|
|
|
|
|
ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3)
|
|
|
|
|
ax[i].set_title(s[j] + f"\n{round(y[index], 5)}")
|
|
|
|
|
else:
|
|
|
|
|
# last
|
|
|
|
|
ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3)
|
|
|
|
|
ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}")
|
|
|
|
|
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
|
|
|
|
|
ax[i].set_title(s[j], fontsize=12)
|
|
|
|
|
# if j in [8, 9, 10]: # share train and val loss y axes
|
|
|
|
|
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"Warning: Plotting error for {f}: {e}")
|
|
|
|
|
print(f'Warning: Plotting error for {f}: {e}')
|
|
|
|
|
ax[1].legend()
|
|
|
|
|
fig.savefig(save_dir / "results.png", dpi=200)
|
|
|
|
|
fig.savefig(save_dir / 'results.png', dpi=200)
|
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -334,100 +313,4 @@ def output_to_target(output, max_det=300):
|
|
|
|
|
j = torch.full((conf.shape[0], 1), i)
|
|
|
|
|
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
|
|
|
|
|
targets = torch.cat(targets, 0).numpy()
|
|
|
|
|
return targets[:, 0], targets[:, 1], targets[:, 2:6], targets[:, 6]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@threaded
|
|
|
|
|
def plot_images(images, batch_idx, cls, bboxes, confs=None, paths=None, fname='images.jpg', names=None):
|
|
|
|
|
# Plot image grid with labels
|
|
|
|
|
if isinstance(images, torch.Tensor):
|
|
|
|
|
images = images.cpu().float().numpy()
|
|
|
|
|
if isinstance(cls, torch.Tensor):
|
|
|
|
|
cls = cls.cpu().numpy()
|
|
|
|
|
if isinstance(bboxes, torch.Tensor):
|
|
|
|
|
bboxes = bboxes.cpu().numpy()
|
|
|
|
|
if isinstance(batch_idx, torch.Tensor):
|
|
|
|
|
batch_idx = batch_idx.cpu().numpy()
|
|
|
|
|
|
|
|
|
|
max_size = 1920 # max image size
|
|
|
|
|
max_subplots = 16 # max image subplots, i.e. 4x4
|
|
|
|
|
bs, _, h, w = images.shape # batch size, _, height, width
|
|
|
|
|
bs = min(bs, max_subplots) # limit plot images
|
|
|
|
|
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
|
|
|
|
if np.max(images[0]) <= 1:
|
|
|
|
|
images *= 255 # de-normalise (optional)
|
|
|
|
|
|
|
|
|
|
# Build Image
|
|
|
|
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
|
|
|
|
for i, im in enumerate(images):
|
|
|
|
|
if i == max_subplots: # if last batch has fewer images than we expect
|
|
|
|
|
break
|
|
|
|
|
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
|
|
|
|
im = im.transpose(1, 2, 0)
|
|
|
|
|
mosaic[y:y + h, x:x + w, :] = im
|
|
|
|
|
|
|
|
|
|
# Resize (optional)
|
|
|
|
|
scale = max_size / ns / max(h, w)
|
|
|
|
|
if scale < 1:
|
|
|
|
|
h = math.ceil(scale * h)
|
|
|
|
|
w = math.ceil(scale * w)
|
|
|
|
|
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
|
|
|
|
|
|
|
|
|
# Annotate
|
|
|
|
|
fs = int((h + w) * ns * 0.01) # font size
|
|
|
|
|
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
|
|
|
|
|
for i in range(i + 1):
|
|
|
|
|
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
|
|
|
|
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
|
|
|
|
if paths:
|
|
|
|
|
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
|
|
|
|
if len(cls) > 0:
|
|
|
|
|
idx = batch_idx == i
|
|
|
|
|
|
|
|
|
|
boxes = xywh2xyxy(bboxes[idx]).T
|
|
|
|
|
classes = cls[idx].astype('int')
|
|
|
|
|
labels = confs is None # labels if no conf column
|
|
|
|
|
conf = None if labels else confs[idx] # check for confidence presence (label vs pred)
|
|
|
|
|
|
|
|
|
|
if boxes.shape[1]:
|
|
|
|
|
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
|
|
|
|
boxes[[0, 2]] *= w # scale to pixels
|
|
|
|
|
boxes[[1, 3]] *= h
|
|
|
|
|
elif scale < 1: # absolute coords need scale if image scales
|
|
|
|
|
boxes *= scale
|
|
|
|
|
boxes[[0, 2]] += x
|
|
|
|
|
boxes[[1, 3]] += y
|
|
|
|
|
for j, box in enumerate(boxes.T.tolist()):
|
|
|
|
|
c = classes[j]
|
|
|
|
|
color = colors(c)
|
|
|
|
|
c = names[c] if names else c
|
|
|
|
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
|
|
|
|
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
|
|
|
|
|
annotator.box_label(box, label, color=color)
|
|
|
|
|
annotator.im.save(fname) # save
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_results(file='path/to/results.csv', dir=''):
|
|
|
|
|
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
|
|
|
|
save_dir = Path(file).parent if file else Path(dir)
|
|
|
|
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
|
|
|
|
ax = ax.ravel()
|
|
|
|
|
files = list(save_dir.glob('results*.csv'))
|
|
|
|
|
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
|
|
|
|
|
for f in files:
|
|
|
|
|
try:
|
|
|
|
|
data = pd.read_csv(f)
|
|
|
|
|
s = [x.strip() for x in data.columns]
|
|
|
|
|
x = data.values[:, 0]
|
|
|
|
|
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
|
|
|
|
|
y = data.values[:, j].astype('float')
|
|
|
|
|
# y[y == 0] = np.nan # don't show zero values
|
|
|
|
|
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
|
|
|
|
|
ax[i].set_title(s[j], fontsize=12)
|
|
|
|
|
# if j in [8, 9, 10]: # share train and val loss y axes
|
|
|
|
|
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f'Warning: Plotting error for {f}: {e}')
|
|
|
|
|
ax[1].legend()
|
|
|
|
|
fig.savefig(save_dir / 'results.png', dpi=200)
|
|
|
|
|
plt.close()
|
|
|
|
|
return targets[:, 0], targets[:, 1], targets[:, 2:]
|
|
|
|
|