Add YOLOv5 tutorials to docs.ultralytics.com (#1657)
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Sergiu Waxmann <47978446+sergiuwaxmann@users.noreply.github.com>
This commit is contained in:
@ -1,14 +1,60 @@
|
||||
The YOLO Command Line Interface (CLI) is the easiest way to get started training, validating, predicting and exporting
|
||||
YOLOv8 models.
|
||||
# Command Line Interface Usage
|
||||
|
||||
The `yolo` command is used for all actions:
|
||||
The YOLO command line interface (CLI) allows for simple single-line commands without the need for a Python environment.
|
||||
CLI requires no customization or Python code. You can simply run all tasks from the terminal with the `yolo` command.
|
||||
|
||||
!!! example ""
|
||||
!!! example
|
||||
|
||||
=== "CLI"
|
||||
|
||||
=== "Syntax"
|
||||
|
||||
Ultralytics `yolo` commands use the following syntax:
|
||||
```bash
|
||||
yolo TASK MODE ARGS
|
||||
|
||||
Where TASK (optional) is one of [detect, segment, classify]
|
||||
MODE (required) is one of [train, val, predict, export, track]
|
||||
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
|
||||
```
|
||||
See all ARGS in the full [Configuration Guide](./cfg.md) or with `yolo cfg`
|
||||
|
||||
=== "Train"
|
||||
|
||||
Train a detection model for 10 epochs with an initial learning_rate of 0.01
|
||||
```bash
|
||||
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
```
|
||||
|
||||
=== "Predict"
|
||||
|
||||
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
||||
```bash
|
||||
yolo predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
|
||||
```
|
||||
|
||||
=== "Val"
|
||||
|
||||
Val a pretrained detection model at batch-size 1 and image size 640:
|
||||
```bash
|
||||
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
||||
```
|
||||
|
||||
=== "Export"
|
||||
|
||||
Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
||||
```bash
|
||||
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
|
||||
```
|
||||
|
||||
=== "Special"
|
||||
|
||||
Run special commands to see version, view settings, run checks and more:
|
||||
```bash
|
||||
yolo help
|
||||
yolo checks
|
||||
yolo version
|
||||
yolo settings
|
||||
yolo copy-cfg
|
||||
yolo cfg
|
||||
```
|
||||
|
||||
Where:
|
||||
@ -20,9 +66,9 @@ Where:
|
||||
For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml`
|
||||
GitHub [source](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cfg/default.yaml).
|
||||
|
||||
!!! note ""
|
||||
!!! warning "Warning"
|
||||
|
||||
<b>Note:</b> Arguments MUST be passed as `arg=val` with an equals sign and a space between `arg=val` pairs
|
||||
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` beteen arguments.
|
||||
|
||||
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅
|
||||
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌
|
||||
@ -33,63 +79,100 @@ Where:
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see
|
||||
the [Configuration](cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
!!! example "Example"
|
||||
|
||||
```bash
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
yolo detect train resume model=last.pt # resume training
|
||||
```
|
||||
=== "Train"
|
||||
|
||||
Start training YOLOv8n on COCO128 for 100 epochs at image-size 640.
|
||||
```bash
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
=== "Resume"
|
||||
|
||||
Resume an interrupted training.
|
||||
```bash
|
||||
yolo detect train resume model=last.pt
|
||||
```
|
||||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's
|
||||
training `data` and arguments as model attributes.
|
||||
|
||||
!!! example ""
|
||||
!!! example "Example"
|
||||
|
||||
```bash
|
||||
yolo detect val model=yolov8n.pt # val official model
|
||||
yolo detect val model=path/to/best.pt # val custom model
|
||||
```
|
||||
=== "Official"
|
||||
|
||||
Validate an official YOLOv8n model.
|
||||
```bash
|
||||
yolo detect val model=yolov8n.pt
|
||||
```
|
||||
|
||||
=== "Custom"
|
||||
|
||||
Validate a custom-trained model.
|
||||
```bash
|
||||
yolo detect val model=path/to/best.pt
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n model to run predictions on images.
|
||||
|
||||
!!! example ""
|
||||
!!! example "Example"
|
||||
|
||||
```bash
|
||||
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
=== "Official"
|
||||
|
||||
Predict with an official YOLOv8n model.
|
||||
```bash
|
||||
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
|
||||
```
|
||||
|
||||
=== "Custom"
|
||||
|
||||
Predict with a custom model.
|
||||
```bash
|
||||
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'
|
||||
```
|
||||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example ""
|
||||
!!! example "Example"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
=== "Official"
|
||||
|
||||
Available YOLOv8 export formats include:
|
||||
|
||||
| Format | `format=` | Model |
|
||||
|----------------------------------------------------------------------------|--------------------|---------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` |
|
||||
| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` |
|
||||
| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` |
|
||||
| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` |
|
||||
| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` |
|
||||
| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` |
|
||||
Export an official YOLOv8n model to ONNX format.
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx
|
||||
```
|
||||
|
||||
=== "Custom"
|
||||
|
||||
Export a custom-trained model to ONNX format.
|
||||
```bash
|
||||
yolo export model=path/to/best.pt format=onnx
|
||||
```
|
||||
|
||||
Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument,
|
||||
i.e. `format='onnx'` or `format='engine'`.
|
||||
|
||||
| Format | `format` Argument | Model | Metadata |
|
||||
|--------------------------------------------------------------------|-------------------|---------------------------|----------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | ✅ |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ |
|
||||
|
||||
---
|
||||
|
||||
@ -99,19 +182,19 @@ Default arguments can be overridden by simply passing them as arguments in the C
|
||||
|
||||
!!! tip ""
|
||||
|
||||
=== "Example 1"
|
||||
=== "Train"
|
||||
Train a detection model for `10 epochs` with `learning_rate` of `0.01`
|
||||
```bash
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
```
|
||||
|
||||
=== "Example 2"
|
||||
=== "Predict"
|
||||
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
||||
```bash
|
||||
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
|
||||
```
|
||||
|
||||
=== "Example 3"
|
||||
=== "Val"
|
||||
Validate a pretrained detection model at batch-size 1 and image size 640:
|
||||
```bash
|
||||
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
||||
|
@ -1,4 +1,43 @@
|
||||
The simplest way of simply using YOLOv8 directly in a Python environment.
|
||||
# Python Usage
|
||||
|
||||
Welcome to the YOLOv8 Python Usage documentation! This guide is designed to help you seamlessly integrate YOLOv8 into
|
||||
your Python projects for object detection, segmentation, and classification. Here, you'll learn how to load and use
|
||||
pretrained models, train new models, and perform predictions on images. The easy-to-use Python interface is a valuable
|
||||
resource for anyone looking to incorporate YOLOv8 into their Python projects, allowing you to quickly implement advanced
|
||||
object detection capabilities. Let's get started!
|
||||
|
||||
For example, users can load a model, train it, evaluate its performance on a validation set, and even export it to ONNX
|
||||
format with just a few lines of code.
|
||||
|
||||
!!! example "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Create a new YOLO model from scratch
|
||||
model = YOLO('yolov8n.yaml')
|
||||
|
||||
# Load a pretrained YOLO model (recommended for training)
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
# Train the model using the 'coco128.yaml' dataset for 3 epochs
|
||||
results = model.train(data='coco128.yaml', epochs=3)
|
||||
|
||||
# Evaluate the model's performance on the validation set
|
||||
results = model.val()
|
||||
|
||||
# Perform object detection on an image using the model
|
||||
results = model('https://ultralytics.com/images/bus.jpg')
|
||||
|
||||
# Export the model to ONNX format
|
||||
success = model.export(format='onnx')
|
||||
```
|
||||
|
||||
## [Train](../modes/train.md)
|
||||
|
||||
Train mode is used for training a YOLOv8 model on a custom dataset. In this mode, the model is trained using the
|
||||
specified dataset and hyperparameters. The training process involves optimizing the model's parameters so that it can
|
||||
accurately predict the classes and locations of objects in an image.
|
||||
|
||||
!!! example "Train"
|
||||
|
||||
@ -25,6 +64,14 @@ The simplest way of simply using YOLOv8 directly in a Python environment.
|
||||
model.train(resume=True)
|
||||
```
|
||||
|
||||
[Train Examples](../modes/train.md){ .md-button .md-button--primary}
|
||||
|
||||
## [Val](../modes/val.md)
|
||||
|
||||
Val mode is used for validating a YOLOv8 model after it has been trained. In this mode, the model is evaluated on a
|
||||
validation set to measure its accuracy and generalization performance. This mode can be used to tune the hyperparameters
|
||||
of the model to improve its performance.
|
||||
|
||||
!!! example "Val"
|
||||
|
||||
=== "Val after training"
|
||||
@ -47,6 +94,14 @@ The simplest way of simply using YOLOv8 directly in a Python environment.
|
||||
model.val(data='coco128.yaml')
|
||||
```
|
||||
|
||||
[Val Examples](../modes/val.md){ .md-button .md-button--primary}
|
||||
|
||||
## [Predict](../modes/predict.md)
|
||||
|
||||
Predict mode is used for making predictions using a trained YOLOv8 model on new images or videos. In this mode, the
|
||||
model is loaded from a checkpoint file, and the user can provide images or videos to perform inference. The model
|
||||
predicts the classes and locations of objects in the input images or videos.
|
||||
|
||||
!!! example "Predict"
|
||||
|
||||
=== "From source"
|
||||
@ -108,30 +163,86 @@ The simplest way of simply using YOLOv8 directly in a Python environment.
|
||||
result = result.numpy()
|
||||
```
|
||||
|
||||
!!! note "Export and Deployment"
|
||||
[Predict Examples](../modes/predict.md){ .md-button .md-button--primary}
|
||||
|
||||
=== "Export, Fuse & info"
|
||||
## [Export](../modes/export.md)
|
||||
|
||||
Export mode is used for exporting a YOLOv8 model to a format that can be used for deployment. In this mode, the model is
|
||||
converted to a format that can be used by other software applications or hardware devices. This mode is useful when
|
||||
deploying the model to production environments.
|
||||
|
||||
!!! example "Export"
|
||||
|
||||
=== "Export to ONNX"
|
||||
|
||||
Export an official YOLOv8n model to ONNX with dynamic batch-size and image-size.
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO('yolov8n.pt')
|
||||
model.export(format='onnx', dynamic=True)
|
||||
```
|
||||
|
||||
=== "Export to TensorRT"
|
||||
|
||||
Export an official YOLOv8n model to TensorRT on `device=0` for acceleration on CUDA devices.
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO('yolov8n.pt')
|
||||
model.export(format='onnx', device=0)
|
||||
```
|
||||
|
||||
[Export Examples](../modes/export.md){ .md-button .md-button--primary}
|
||||
|
||||
## [Track](../modes/track.md)
|
||||
|
||||
Track mode is used for tracking objects in real-time using a YOLOv8 model. In this mode, the model is loaded from a
|
||||
checkpoint file, and the user can provide a live video stream to perform real-time object tracking. This mode is useful
|
||||
for applications such as surveillance systems or self-driving cars.
|
||||
|
||||
!!! example "Track"
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("model.pt")
|
||||
model.fuse()
|
||||
model.info(verbose=True) # Print model information
|
||||
model.export(format=) # TODO:
|
||||
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load an official detection model
|
||||
model = YOLO('yolov8n-seg.pt') # load an official segmentation model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
|
||||
# Track with the model
|
||||
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True)
|
||||
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True, tracker="bytetrack.yaml")
|
||||
```
|
||||
=== "Deployment"
|
||||
|
||||
[Track Examples](../modes/track.md){ .md-button .md-button--primary}
|
||||
|
||||
More functionality coming soon
|
||||
## [Benchmark](../modes/benchmark.md)
|
||||
|
||||
To know more about using `YOLO` models, refer Model class Reference
|
||||
Benchmark mode is used to profile the speed and accuracy of various export formats for YOLOv8. The benchmarks provide
|
||||
information on the size of the exported format, its `mAP50-95` metrics (for object detection and segmentation)
|
||||
or `accuracy_top5` metrics (for classification), and the inference time in milliseconds per image across various export
|
||||
formats like ONNX, OpenVINO, TensorRT and others. This information can help users choose the optimal export format for
|
||||
their specific use case based on their requirements for speed and accuracy.
|
||||
|
||||
[Model reference](../reference/model.md){ .md-button .md-button--primary}
|
||||
!!! example "Benchmark"
|
||||
|
||||
---
|
||||
=== "Python"
|
||||
|
||||
Benchmark an official YOLOv8n model across all export formats.
|
||||
```python
|
||||
from ultralytics.yolo.utils.benchmarks import benchmark
|
||||
|
||||
# Benchmark
|
||||
benchmark(model='yolov8n.pt', imgsz=640, half=False, device=0)
|
||||
```
|
||||
|
||||
### Using Trainers
|
||||
[Benchmark Examples](../modes/benchmark.md){ .md-button .md-button--primary}
|
||||
|
||||
## Using Trainers
|
||||
|
||||
`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits
|
||||
from `BaseTrainer`.
|
||||
|
Reference in New Issue
Block a user