ultralytics 8.0.151 add DOTAv2.yaml for OBB training (#4258)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-08-10 00:55:36 +02:00
committed by GitHub
parent a76af55533
commit c9be1f3cce
46 changed files with 805 additions and 303 deletions

View File

@ -31,7 +31,7 @@ Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. See Argum
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
# Train the model
model.train(data='coco128.yaml', epochs=100, imgsz=640)
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
```
=== "CLI"
@ -61,7 +61,7 @@ The training device can be specified using the `device` argument. If no argument
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
# Train the model with 2 GPUs
model.train(data='coco128.yaml', epochs=100, imgsz=640, device=[0, 1])
results = model.train(data='coco128.yaml', epochs=100, imgsz=640, device=[0, 1])
```
=== "CLI"
@ -87,7 +87,7 @@ To enable training on Apple M1 and M2 chips, you should specify 'mps' as your de
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
# Train the model with 2 GPUs
model.train(data='coco128.yaml', epochs=100, imgsz=640, device='mps')
results = model.train(data='coco128.yaml', epochs=100, imgsz=640, device='mps')
```
=== "CLI"
@ -119,7 +119,7 @@ Below is an example of how to resume an interrupted training using Python and vi
model = YOLO('path/to/last.pt') # load a partially trained model
# Resume training
model.train(resume=True)
results = model.train(resume=True)
```
=== "CLI"