Release 8.0.5 PR (#279)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Izam Mohammed <106471909+izam-mohammed@users.noreply.github.com> Co-authored-by: Yue WANG 王跃 <92371174+yuewangg@users.noreply.github.com> Co-authored-by: Thibaut Lucas <thibautlucas13@gmail.com>single_channel
parent
9552827157
commit
c42e44a021
@ -0,0 +1 @@
|
||||
docs.ultralytics.com
|
@ -0,0 +1,140 @@
|
||||
This is the simplest way of simply using YOLOv8 models in a Python environment. It can be imported from
|
||||
the `ultralytics` module.
|
||||
|
||||
!!! example "Train"
|
||||
|
||||
=== "From pretrained(recommanded)"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt") # pass any model type
|
||||
model.train(epochs=5)
|
||||
```
|
||||
|
||||
=== "From scratch"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.yaml")
|
||||
model.train(data="coco128.yaml", epochs=5)
|
||||
```
|
||||
|
||||
=== "Resume"
|
||||
```python
|
||||
TODO: Resume feature is under development and should be released soon.
|
||||
```
|
||||
|
||||
!!! example "Val"
|
||||
|
||||
=== "Val after training"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.yaml")
|
||||
model.train(data="coco128.yaml", epochs=5)
|
||||
model.val() # It'll automatically evaluate the data you trained.
|
||||
```
|
||||
|
||||
=== "Val independently"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("model.pt")
|
||||
# It'll use the data yaml file in model.pt if you don't set data.
|
||||
model.val()
|
||||
# or you can set the data you want to val
|
||||
model.val(data="coco128.yaml")
|
||||
```
|
||||
|
||||
!!! example "Predict"
|
||||
|
||||
=== "From source"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("model.pt")
|
||||
model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam
|
||||
model.predict(source="folder", show=True) # Display preds. Accepts all yolo predict arguments
|
||||
|
||||
```
|
||||
|
||||
=== "From image/ndarray/tensor"
|
||||
```python
|
||||
# TODO, still working on it.
|
||||
```
|
||||
|
||||
|
||||
=== "Return outputs"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("model.pt")
|
||||
outputs = model.predict(source="0", return_outputs=True) # treat predict as a Python generator
|
||||
for output in outputs:
|
||||
# each output here is a dict.
|
||||
# for detection
|
||||
print(output["det"]) # np.ndarray, (N, 6), xyxy, score, cls
|
||||
# for segmentation
|
||||
print(output["det"]) # np.ndarray, (N, 6), xyxy, score, cls
|
||||
print(output["segment"]) # List[np.ndarray] * N, bounding coordinates of masks
|
||||
# for classify
|
||||
print(output["prob"]) # np.ndarray, (num_class, ), cls prob
|
||||
|
||||
```
|
||||
|
||||
!!! note "Export and Deployment"
|
||||
|
||||
=== "Export, Fuse & info"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("model.pt")
|
||||
model.fuse()
|
||||
model.info(verbose=True) # Print model information
|
||||
model.export(format=) # TODO:
|
||||
|
||||
```
|
||||
=== "Deployment"
|
||||
|
||||
|
||||
More functionality coming soon
|
||||
|
||||
To know more about using `YOLO` models, refer Model class Reference
|
||||
|
||||
[Model reference](reference/model.md){ .md-button .md-button--primary}
|
||||
|
||||
---
|
||||
|
||||
### Using Trainers
|
||||
|
||||
`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits
|
||||
from `BaseTrainer`.
|
||||
|
||||
!!! tip "Detection Trainer Example"
|
||||
|
||||
```python
|
||||
from ultralytics.yolo import v8 import DetectionTrainer, DetectionValidator, DetectionPredictor
|
||||
|
||||
# trainer
|
||||
trainer = DetectionTrainer(overrides={})
|
||||
trainer.train()
|
||||
trained_model = trainer.best
|
||||
|
||||
# Validator
|
||||
val = DetectionValidator(args=...)
|
||||
val(model=trained_model)
|
||||
|
||||
# predictor
|
||||
pred = DetectionPredictor(overrides={})
|
||||
pred(source=SOURCE, model=trained_model)
|
||||
|
||||
# resume from last weight
|
||||
overrides["resume"] = trainer.last
|
||||
trainer = detect.DetectionTrainer(overrides=overrides)
|
||||
```
|
||||
|
||||
You can easily customize Trainers to support custom tasks or explore R&D ideas.
|
||||
Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization
|
||||
Section.
|
||||
|
||||
[Customization tutorials](engine.md){ .md-button .md-button--primary}
|
@ -1,5 +1,8 @@
|
||||
All task Predictors are inherited from `BasePredictors` class that contains the model validation routine boilerplate. You can override any function of these Trainers to suit your needs.
|
||||
All task Predictors are inherited from `BasePredictors` class that contains the model validation routine boilerplate.
|
||||
You can override any function of these Trainers to suit your needs.
|
||||
|
||||
---
|
||||
|
||||
### BasePredictor API Reference
|
||||
|
||||
:::ultralytics.yolo.engine.predictor.BasePredictor
|
@ -1,5 +1,8 @@
|
||||
All task Trainers are inherited from `BaseTrainer` class that contains the model training and optimzation routine boilerplate. You can override any function of these Trainers to suit your needs.
|
||||
All task Trainers are inherited from `BaseTrainer` class that contains the model training and optimzation routine
|
||||
boilerplate. You can override any function of these Trainers to suit your needs.
|
||||
|
||||
---
|
||||
|
||||
### BaseTrainer API Reference
|
||||
|
||||
:::ultralytics.yolo.engine.trainer.BaseTrainer
|
@ -1,5 +1,8 @@
|
||||
All task Validators are inherited from `BaseValidator` class that contains the model validation routine boilerplate. You can override any function of these Trainers to suit your needs.
|
||||
All task Validators are inherited from `BaseValidator` class that contains the model validation routine boilerplate. You
|
||||
can override any function of these Trainers to suit your needs.
|
||||
|
||||
---
|
||||
|
||||
### BaseValidator API Reference
|
||||
|
||||
:::ultralytics.yolo.engine.validator.BaseValidator
|
@ -1,2 +1,3 @@
|
||||
### Exporter API Reference
|
||||
|
||||
:::ultralytics.yolo.engine.exporter.Exporter
|
@ -1,91 +0,0 @@
|
||||
## Using YOLO models
|
||||
This is the simplest way of simply using yolo models in a python environment. It can be imported from the `ultralytics` module.
|
||||
|
||||
!!! example "Usage"
|
||||
=== "Training"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.yaml")
|
||||
model(img_tensor) # Or model.forward(). inference.
|
||||
model.train(data="coco128.yaml", epochs=5)
|
||||
```
|
||||
|
||||
=== "Training pretrained"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt") # pass any model type
|
||||
model(...) # inference
|
||||
model.train(epochs=5)
|
||||
```
|
||||
|
||||
=== "Resume Training"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO()
|
||||
model.resume(task="detect") # resume last detection training
|
||||
model.resume(model="last.pt") # resume from a given model/run
|
||||
```
|
||||
|
||||
=== "Visualize/save Predictions"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("model.pt")
|
||||
model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam
|
||||
model.predict(source="folder", show=True) # Display preds. Accepts all yolo predict arguments
|
||||
|
||||
```
|
||||
|
||||
!!! note "Export and Deployment"
|
||||
|
||||
=== "Export, Fuse & info"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("model.pt")
|
||||
model.fuse()
|
||||
model.info(verbose=True) # Print model information
|
||||
model.export(format=) # TODO:
|
||||
|
||||
```
|
||||
=== "Deployment"
|
||||
|
||||
|
||||
More functionality coming soon
|
||||
|
||||
To know more about using `YOLO` models, refer Model class Reference
|
||||
|
||||
[Model reference](reference/model.md){ .md-button .md-button--primary}
|
||||
|
||||
---
|
||||
### Using Trainers
|
||||
`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits from `BaseTrainer`.
|
||||
!!! tip "Detection Trainer Example"
|
||||
```python
|
||||
from ultralytics.yolo import v8 import DetectionTrainer, DetectionValidator, DetectionPredictor
|
||||
|
||||
# trainer
|
||||
trainer = DetectionTrainer(overrides={})
|
||||
trainer.train()
|
||||
trained_model = trainer.best
|
||||
|
||||
# Validator
|
||||
val = DetectionValidator(args=...)
|
||||
val(model=trained_model)
|
||||
|
||||
# predictor
|
||||
pred = DetectionPredictor(overrides={})
|
||||
pred(source=SOURCE, model=trained_model)
|
||||
|
||||
# resume from last weight
|
||||
overrides["resume"] = trainer.last
|
||||
trainer = detect.DetectionTrainer(overrides=overrides)
|
||||
|
||||
```
|
||||
You can easily customize Trainers to support custom tasks or explore R&D ideas.
|
||||
Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization Section.
|
||||
|
||||
[Customization tutorials](engine.md){ .md-button .md-button--primary}
|
@ -0,0 +1,133 @@
|
||||
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of
|
||||
predefined classes.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
The output of an image classifier is a single class label and a confidence score. Image
|
||||
classification is useful when you need to know only what class an image belongs to and don't need to know where objects
|
||||
of that class are located or what their exact shape is.
|
||||
|
||||
!!! tip "Tip"
|
||||
|
||||
YOLOv8 _classification_ models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on ImageNet.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8/cls){.md-button .md-button--primary}
|
||||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments
|
||||
see the [Configuration](../config.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.yaml") # build a new model from scratch
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="mnist160", epochs=100, imgsz=64)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo task=classify mode=train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
```
|
||||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains
|
||||
it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
results = model.val() # no arguments needed, dataset and settings remembered
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo task=classify mode=val model=yolov8n-cls.pt # val official model
|
||||
yolo task=classify mode=val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-cls model to run predictions on images.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo task=classify mode=predict model=yolov8n-cls.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
||||
yolo task=classify mode=predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
||||
```
|
||||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained
|
||||
|
||||
# Export the model
|
||||
model.export(format="onnx")
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo mode=export model=yolov8n-cls.pt format=onnx # export official model
|
||||
yolo mode=export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-cls export formats include:
|
||||
|
||||
| Format | `format=` | Model |
|
||||
|----------------------------------------------------------------------------|---------------|-------------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` |
|
||||
| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` |
|
||||
| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` |
|
||||
| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` |
|
||||
| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` |
|
||||
| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` |
|
||||
|
@ -0,0 +1,132 @@
|
||||
Object detection is a task that involves identifying the location and class of objects in an image or video stream.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
The output of an object detector is a set of bounding boxes that enclose the objects in the image, along with class
|
||||
labels
|
||||
and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a
|
||||
scene, but don't need to know exactly where the object is or its exact shape.
|
||||
|
||||
!!! tip "Tip"
|
||||
|
||||
YOLOv8 _detection_ models have no suffix and are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on COCO.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8){ .md-button .md-button--primary}
|
||||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see
|
||||
the [Configuration](../config.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.yaml") # build a new model from scratch
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo task=detect mode=train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's
|
||||
training `data` and arguments as model attributes.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
results = model.val() # no arguments needed, dataset and settings remembered
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo task=detect mode=val model=yolov8n.pt # val official model
|
||||
yolo task=detect mode=val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n model to run predictions on images.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo task=detect mode=predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
||||
yolo task=detect mode=predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
||||
```
|
||||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained
|
||||
|
||||
# Export the model
|
||||
model.export(format="onnx")
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo mode=export model=yolov8n.pt format=onnx # export official model
|
||||
yolo mode=export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8 export formats include:
|
||||
|
||||
| Format | `format=` | Model |
|
||||
|----------------------------------------------------------------------------|--------------------|---------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` |
|
||||
| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` |
|
||||
| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` |
|
||||
| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` |
|
||||
| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` |
|
||||
| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` |
|
@ -0,0 +1,135 @@
|
||||
Instance segmentation goes a step further than object detection and involves identifying individual objects in an image
|
||||
and segmenting them from the rest of the image.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
The output of an instance segmentation model is a set of masks or
|
||||
contours that outline each object in the image, along with class labels and confidence scores for each object. Instance
|
||||
segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is.
|
||||
|
||||
!!! tip "Tip"
|
||||
|
||||
YOLOv8 _segmentation_ models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on COCO.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8/seg){.md-button .md-button--primary}
|
||||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available
|
||||
arguments see the [Configuration](../config.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.yaml") # build a new model from scratch
|
||||
model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco128-seg.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo task=segment mode=train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-seg model accuracy on the COCO128-seg dataset. No argument need to passed as the `model`
|
||||
retains it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
results = model.val() # no arguments needed, dataset and settings remembered
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo task=segment mode=val model=yolov8n-seg.pt # val official model
|
||||
yolo task=segment mode=val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-seg model to run predictions on images.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo task=segment mode=predict model=yolov8n-seg.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
||||
yolo task=segment mode=predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
||||
```
|
||||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained
|
||||
|
||||
# Export the model
|
||||
model.export(format="onnx")
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo mode=export model=yolov8n-seg.pt format=onnx # export official model
|
||||
yolo mode=export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-seg export formats include:
|
||||
|
||||
| Format | `format=` | Model |
|
||||
|----------------------------------------------------------------------------|---------------|-------------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-seg.pt` |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-seg.torchscript` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-seg.onnx` |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-seg_openvino_model/` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-seg.engine` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-seg.mlmodel` |
|
||||
| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-seg_saved_model/` |
|
||||
| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-seg.pb` |
|
||||
| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-seg.tflite` |
|
||||
| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-seg_edgetpu.tflite` |
|
||||
| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` |
|
||||
|
||||
|
||||
|
Loading…
Reference in new issue